Wireless power transfer based on magnetic metamaterials consisting of assembled ultra-subwavelength meta-atoms

Abstract

In this letter, a potential way to transfer power wirelessly based on magnetic metamaterials (MMs) assembled by ultra-subwavelength meta-atoms is proposed. Frequency-domain simulation and experiments are performed for accurately obtaining effective permeability of magnetic metamaterials. The results demonstrate that MMs possess great power for enhancing the wireless power transfer efficiency between two non-resonant coils. Further investigations on the magnetic-field distribution demonstrate that a large-area flattened magnetic field in near range can be effectively realized, exhibiting great flexibility in assembling.

Publication
EPL, 109(68005) (Reported by Phys.org)
Click the Cite button above to demo the feature to enable visitors to import publication metadata into their reference management software.
Create your slides in Markdown - click the Slides button to check out the example.

Supplementary notes can be added here, including code, math, and images.

Qian Wu (吳謙)
Qian Wu (吳謙)
Postdoctoral Fellow of Mechanical Engineering

My research interests include active elastic metamaterials, topological mechanics and elastodynamics, and non-Hermitian elastic systems.