Solids built out of active components have exhibited odd elastic stiffness tensors whose active moduli appear in the antisymmetric part and which give rise to non-Hermitian static and dynamic phenomena. Here we present a new class of active metamaterial featured with an odd mass density tensor whose asymmetric part arises from active and non-conservative forces. The odd mass density is realized using metamaterials with inner resonators connected by asymmetric and programmable feed-forward control on acceleration and active forces along the two perpendicular directions. The active forces produce unbalanced off-diagonal mass density coupling terms, leading to non-Hermiticity. The odd mass is then experimentally validated through a one-dimensional nonreciprocal wave coupling where propagating transverse waves are coupled with longitudinal ones whereas the reverse is forbidden. We reveal that the two-dimensional active metamaterials with the odd mass can perform in either energy-unbroken or energy-broken phases separated by exceptional points along principal directions of the mass density. The odd mass density contributes to the wave anisotropy in the energy-unbroken phase and directional wave energy gain in the energy-broken phase. We also numerically illustrate the two-dimensional wave propagation phenomena that arise from the odd mass in active solids. Finally, the existence of non-Hermitian skin effect is discussed in which boundaries host an extensive number of localized modes. It is our hope that the emergent concept of the odd mass can open up a new research platform for mechanical non-Hermitian system and pave the ways for developing next-generation wave steering devices.
Supplementary notes can be added here, including code, math, and images.