Multifunctional Metamaterials for Energy Harvesting and Vibration Control

Abstract

Multifunctional metamaterials (MFMs) capable of energy harvesting and vibration control are particularly attractive for smart structures, wearable/biointegrated electronics, and intelligent robotics. Here, a novel MFM based on triboelectric nanogenerators (TENGs), which can harvest environmental energy and reduce vibration simultaneously, is reported. The unit cells of the MFM consist of a local resonator, an integrated contact- separation mode TENG, and spiral-shaped connecting beams. A multiphysics theoretical model is developed for quantitatively evaluating the performance of the MFM by including the mechanical and electrical fields interactions, which is further validated by experimental testing. It is demonstrated that the TENG-based MFM can not only effectively harvest vibration energy to power electronics but also dramatically suppress low-frequency mechanical vibration. This work provides a new design and model for developing novel TENG-based MFMs for advanced smart systems used in a variety of applications.

Publication
Advanced Functional Materials, 32(2107896)
Click the Cite button above to demo the feature to enable visitors to import publication metadata into their reference management software.
Create your slides in Markdown - click the Slides button to check out the example.

Supplementary notes can be added here, including code, math, and images.

Qian Wu (吳謙)
Qian Wu (吳謙)
Postdoctoral Fellow of Mechanical Engineering

My research interests include active elastic metamaterials, topological mechanics and elastodynamics, and non-Hermitian elastic systems.