Physical observation of a robust acoustic pumping in waveguides with dynamic boundary

Abstract

Research on breaking time-reversal symmetry to realize one-way wave propagation is a growing area in photonic and phononic crystals and metamaterials. In this Letter, we present physical realization of an acoustic waveguide with spatiotemporally modulated boundary conditions to realize nonreciprocal transport and acoustic topological pumping. The modulated waveguide inspired by a water wheel consists of a helical tube rotating around a slotted tube at a controllable speed. The rotation of the helical tube creates moving boundary conditions for the exposed waveguide sections at a constant speed. We experimentally demonstrate acoustic nonreciprocity and topologically robust bulk-edge correspondences for this system, which is in good agreement with analytical and numerical predictions. The nonreciprocal waveguide is a one-dimensional analog to the two-dimensional quantum Hall effect for acoustic circulators and is characterized by a robust integer-valued Chern number. These findings provide insight into practical implications of topological modes in acoustics and the implementation of higher-dimensional topological acoustics where time serves as a synthetic dimension.

Publication
Physical Review Letters, 125(253901)(Selected as Editor’s Suggestion)
Click the Cite button above to demo the feature to enable visitors to import publication metadata into their reference management software.
Create your slides in Markdown - click the Slides button to check out the example.

Supplementary notes can be added here, including code, math, and images.

Qian Wu (吳謙)
Qian Wu (吳謙)
Postdoctoral Fellow of Mechanical Engineering

My research interests include active elastic metamaterials, topological mechanics and elastodynamics, and non-Hermitian elastic systems.