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2.1 (a) Schematic of the non-Hermitian PT symmetric beam for asymmetric flexural wave

scattering. Unidirectional reflectionlessness is illustrated in the figure. (b) Physical

realization of the PT symmetric beam with piezoelectric patches shunted with negative

and positive resistances together with a negative capacitance connected in parallel.

The insets highlighted in red and blue illustrate the physical realization of the electrical

shunting components. Reproduced from The Journal of the Acoustical Society of

America 146, 850 (2019), with the permission of AIP Publishing. . . . . . . . . . . . 10

2.2 (a) Loss or gain unit cell used in effective medium theory and transfer matrix method.

(b) Schematic of the PT symmetric metamaterial beam used in transfer matrix method.

Reproduced from The Journal of the Acoustical Society of America 146, 850 (2019),

with the permission of AIP Publishing. . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Analytically calculated and numerically simulated effective material parameters: (a)

normalized effective mass density ρeff = ρb; (b) Real and (c) imaginary parts of the

normalized effective bending stiffness Deff = Db. The solid curves correspond to the

loss while the dashed to the gain. Reproduced from The Journal of the Acoustical

Society of America 146, 850 (2019), with the permission of AIP Publishing. . . . . . 18

2.4 (a) Real and (b) imaginary parts of the effective bending stiffness with continuously

changed Rsh at 0.5 kHz. (c) Real and (d) imaginary parts of the effective bending

stiffness with continuously changed Rsh at 1 kHz. Reproduced from The Journal of the

Acoustical Society of America 146, 850 (2019), with the permission of AIP Publishing. 19

2.5 (a) Schematic of the PT symmetric metamaterial beam with one pair of loss and gain

components. (b-d) Analytically calculated and numerically simulated amplitudes of

(b) transmission, (c) left reflection and (d) right reflection coefficients. Two of the

unidirectional reflectionlessness points (0.706 and 0.805 kHz) are denoted by green

lines. Reproduced from The Journal of the Acoustical Society of America 146, 850

(2019), with the permission of AIP Publishing. . . . . . . . . . . . . . . . . . . . . . 22

2.6 Top: Schematic of the PT symmetric metamaterial beam in numerical simulations.

Bottom: Simulated flexural wave field |w| at two unidirectional reflectionlessness

points. The arrows indicate the propagation directions of different wave components.

The blue (I), yellow (T), and red (R) arrows correspond to the incidence, transmission,

and reflection, respectively. Reproduced from The Journal of the Acoustical Society

of America 146, 850 (2019), with the permission of AIP Publishing. . . . . . . . . . . 22
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2.7 Analytically calculated phase angles of transmission, left reflection and right reflection

coefficients. Reproduced from The Journal of the Acoustical Society of America 146,

850 (2019), with the permission of AIP Publishing. . . . . . . . . . . . . . . . . . . . 23

2.8 Analytically calculated (a) amplitude and (b) phase of the two eigenvalues. Analyti-

cally calculated (c) real and (d) imaginary parts of the first components of the two

eigenvectors. Analytically calculated (e) real and (f) imaginary parts of the second

components of the two eigenvectors. Reproduced from The Journal of the Acoustical

Society of America 146, 850 (2019), with the permission of AIP Publishing. . . . . . 25

2.9 Analytically calculated log10 (RL/RR) with different distances separating two piezo-

electric patches. Reproduced from The Journal of the Acoustical Society of America

146, 850 (2019), with the permission of AIP Publishing. . . . . . . . . . . . . . . . . 26

2.10 Analytically calculated log10 (RL/RR) by continuously changing (a) Rsh and (b) αN .

Reproduced from The Journal of the Acoustical Society of America 146, 850 (2019),

with the permission of AIP Publishing. . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 Schematic of non-reciprocal propagation of Rayleigh waves at the space-time modu-

lated surface of a semi-infinite medium. An array of oscillators, including masses m

and modulated spring constants Km(x, t) = K + δK cos (qmx− ωmt) with K being

unperturbed spring constant, are attached to the surface of the medium. Each of

the oscillators is separated with one another by a spacing ls. The oscillators only

vibrate along the z-direction. The isotropic continuous medium is described by a

set of elastic parameters (µ, λ and ρ). The Rayleigh waves propagate at the surface

in a non-reciprocal way that the transmission or reflection depends on directions of

incidence at specific frequencies. Reproduced from Journal of the Mechanics and

Physics of Solids 146, 104196 (2021), with the permission of Elsevier Publishing. . . 32
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3.2 Coupling and non-reciprocity: A breaking of time-reversal symmetry produces three

pairs of coupled modes (A), (B) and (C). Pairs (A) and (B) manifest as veering pairs,

while pair (C) is the locking one. The pattern-hatched area represents the region of

bulk modes, enclosed by a shear-wave cone (blue dashed). The constitutive parameters

used here are set as ρ = 2.2 g/cm3, λ = 12.354 GPa, µ = 28.826 GPa, K = 2400

N/m, m = 1.315 × 10−15 kg, and A = 1.0101 × 10−12 m2. ω is normalized to the

resonance frequency of oscillators Ω =
√
K/m while q is normalized to Q = 2× 105

m−1. The modulation parameters throughout the paper are selected as ωm = Ω/4

and qm = 1.35Q. Reproduced from Journal of the Mechanics and Physics of Solids

146, 104196 (2021), with the permission of Elsevier Publishing. . . . . . . . . . . . . 35

3.3 First-order corrections to the dispersion curve and the corrected dispersion relations up

to the first-order correction: A non-zero modulation δK = 0.1K enables the couplings

between different harmonics. The first-order corrections to the pairs A, B and C in

Fig. 3.2 are illustrated in (a), (b) and (c), respectively. The two shaded areas in (c)

represent the two band gaps generated by the modulation. The corrected dispersion

curve of the Rayleigh wave propagation in the space-time modulated semi-infinite

medium is shown in (d), up to the first-order correction. Reproduced from Journal

of the Mechanics and Physics of Solids 146, 104196 (2021), with the permission of

Elsevier Publishing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Parametric study on the influence oscillator spacing ls and modulation strength δK

on the intersection frequency and wave number of the fundamental and the first-order

harmonics and the veering zone width 2δω. (a) and (b) correspond to the veering pair

A, while (c) and (d) correspond to the veering pair B. The red arrows in (a) and (c)

indicate the increasing direction of ls. Reproduced from Journal of the Mechanics and

Physics of Solids 146, 104196 (2021), with the permission of Elsevier Publishing. . . 43

3.5 Dependence of the normalized conversion length Qd (a) and the inverted amplification

factor 1
|C| (b) on (ω1, q1) for an incidence at the mode (ω0, q0), marked with yellow

pentagrams. The pattern-hatched areas denote the bulk regions, and the red curves

are the dispersion curves of the Rayleigh wave in the unmodulated system. (c) and

(d) show dependence of log(Qd) and 1
|C| , respectively, on the variations of K and δK.

Here, K0 = 2.4× 103N/m. Reproduced from Journal of the Mechanics and Physics of

Solids 146, 104196 (2021), with the permission of Elsevier Publishing. . . . . . . . . 45
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3.6 (a) Schematic illustration of the numerical model used to retrieve the dispersion

curve. The top panel gives the time- and frequency-domain spectra of the excitation.

The bottom panel shows the numerical model, with a space-time modulation (STM)

area highlighted in gray and composed of 600 oscillators. The black dashed arrow

indicates the modulation direction. Two sources carrying the above excitation are

placed, as highlighted in green. The low-reflecting boundaries (LRBs) are applied to

minimize the effects of the undesired reflected waves. (b) The recovered dispersion

curve is numerically obtained through a 2D Fourier transform. The blue dashed

lines correspond to the dispersion curve of shear bulk waves. In particular, the green

windows highlight the two pairs (A) and (B) and the coupling between the first-order

and second-order harmonics (C). The color maps of the insets are adjusted accordingly

for better visualization of the details of dispersion relation. Reproduced from Journal

of the Mechanics and Physics of Solids 146, 104196 (2021), with the permission of

Elsevier Publishing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.7 Schematic illustrations of the simulation models. Unlike the previous case of retrieving

the dispersion diagram, there are in total 1000 spring-mass oscillators involved, and a

point load, embedded in the center of the space-time modulation area, is assigned to

serve as the source. Two points (red and blue) separating equally to the source are

designated to collect the time-domain response. The arrow denotes the direction of

modulation. In this way, the red point corresponds to the Rayleigh wave propagation

along the direction of modulation while the blue one indicates the opposite scenario.

(b) presents the time-domain signals collected at the two points indicating different

directions of incidence. The corresponding frequency-domain spectra (c) are derived

through Fourier transform. The nearly total conversion of pair B takes place at the

spectral position highlighted by the circles. Reproduced from Journal of the Mechanics

and Physics of Solids 146, 104196 (2021), with the permission of Elsevier Publishing. 48
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3.8 Illustration of the harmonic conversion process. (a) and (b) Evolution of the harmonic

spectra of the Rayleigh waves propagating against the oscillator position along the

two opposite directions. (c) and (d) Time-frequency-amplitude maps for the two

receiver stations in Fig. 3.7. (c) corresponds to the right-going wave collected at

the red point, while (d) corresponds to the left-going wave collected at the blue

point. In (c) and (d), the blue, red and green lines represent the frequencies of the

incident fundamental, excited first-order and second-order harmonics, respectively.

The frequency resolution is taken as 0.0233Ω, which consequently leads to a time

resolution of 0.1243 µs. Reproduced from Journal of the Mechanics and Physics of

Solids 146, 104196 (2021), with the permission of Elsevier Publishing . . . . . . . . . 50

3.9 Mode conversion of pair B. The displacements of oscillator masses Z (red solid) and

the displacement 2w (blue dashed) are plotted against the oscillator position at various

time instants. For clear observation, the vertical displacement w has been magnified

by 2. The green dashed line represents the position of the source. Reproduced from

Journal of the Mechanics and Physics of Solids 146, 104196 (2021), with the permission

of Elsevier Publishing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.10 (a) The center frequency of the tone-burst is selected so as to match pair A. Other

settings are identical to those in Fig. 3.7 except that only 900 oscillators are included

and the source is still positioned inside the modulation area but close to the right end

of the modulation area. (b) The time-domain and the corresponding frequency-domain

spectrum are presented, showing the generation of higher-order harmonics. (c) Similar

to Fig. 3.9, the time-domain signals for Z (blue dashed) and 2w (red solid) are shown

in functions of oscillator position at different time instants. The inset provides a

magnified view of the initial state of the combined spring-mass semi-infinite system.

Reproduced from Journal of the Mechanics and Physics of Solids 146, 104196 (2021),

with the permission of Elsevier Publishing, . . . . . . . . . . . . . . . . . . . . . . . 52
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4.1 Design and mechanics of a nonlocal micropolar metabeam. (a) A photograph

of the proposed nonlocal micropolar metabeam with a programmable electronic

microcontroller system in the foreground. The host beam is 5 mm wide and 3 mm

thick. It is made of aluminum (ρb=2700 kg/m3, Gb=26 GPa, Eb = 69 GPa). All the

piezoelectric patches mounted on the beam are PZT-AJ (ρp=7600 kg/m3,ϵT33 = 1900ϵ0,

d31 = −1.75 × 10−10 C/N, d33 = 4 × 10−10 C/N, d15 = 5.9 × 10−10 C/N) with

a thickness of 0.64 mm, a side length of 6.4 mm and a width of 4.9 mm. (b) An

illustration of the full nonlocal metabeam, later used in the experiments, is shown in the

top panel. The bottom panel shows the schematic of a segment of the metabeam. The

top and bottom piezoelectric patches serve as actuators and sensors, respectively. They

are connected beyond nonlocally by the transfer function H. The illustrated example

here corresponds to a nearest-neighbor nonlocal configuration. The lattice constant is

L = 10 mm. (c) Schematic illustration of the mechanics of the nonlocal micropolar

metabeam. The motion of the metabeam can be described by two independent

micropolar degrees of freedom: flexural displacement w and rotation angle ϕ. The

(n+ a)th sensor is connected to the nth actuator through H in a periodic way. This

equivalently means the nonlocal bending at x+ δx, where δx = aL, is modulated by

H and then contributes to the local bending at x. . . . . . . . . . . . . . . . . . . . . 57

4.2 Discrete spring-mass representation of the nonlocal micropolar metabeam.

(a) The discrete model consists of a central mass m with moment of inertial J , a

Hookean spring kµ, a torsional spring kB , and the lattice spacing L. The feedback from

nth to the (n− a)th unit cells is represented by p. (b) Schematic of the deformation

of the nth lattice unit cell with wn and ϕn denoting as its flexural displacement and

rotation angle, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
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4.3 Complex dispersion engineering for nonreciprocal amplification and atten-

uation. (a) Complex dispersion for 1st-order nonlocal configuration. The sold curves

are analytical results from the continuum theory. The symbols represent the numerical

results from a fully-coupled Finite-element software (COMSOL Multiphysics). The

inset shows two representative scenarios featuring the nonreciprocity for the opposite

propagation directions at 30 kHz. (b) Imaginary dispersion band for the 1st-, 2nd-,

and 3rd-order nonlocalities. (c) Work done by nonlocal bending, ∆W , with |P |eiΦP

and δx = aL. Four situations are shown with different (ΦP , a). The signs “+” and “-”

correspond to the positive and negative ∆W . In particular, four representative states

are selected. (d) Trajectories of the selected four states in the ℜ(∆W )−ℜ(∂xΦ) space

with |b| = |P | = 1. The particle direction indicates the evolution from one end of IRZ

to the other. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4 Non-Hermitian skin effect. (a) Calculation of the inverse decay length κ using

FEM frequency-domain simulations (dotted) and analytical approach (solid) when

P > 0 and P < 0. (b,c) The complex dispersion bands are displayed for P < 0 and

P > 0. The winding number of each scenario ν is indicated. Comparison between

the numerical simulations and continuum theory is shown. For both scenarios, two

representative modes encircled by the two loops are selected. (d) The corresponding

field distributions of the two selected modes feature the amplification and suppression

of flexural waves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.5 Band tilt induced by nonlocality. (a) The real spectrum for H = 40i is shown

accompanied by the comparison between the reference in absence of active loops (black

dotted), eigenfrequency simulation (red solid) and the continuum theory by Eq. (4.7)

(blue dashed). (b) Phase distributions of the right- and left-going flexural waves through

the metabeam section at 9.211 kHz. The phase is defined as arg(w) = 1i× log[w/|w|].

Only the phase changes within the host beam are illustrated. . . . . . . . . . . . . . 65
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4.6 Reciprocal and nonreciprocal roton-like dispersions. (a) Schematic illustration

of the nonlocal realization of the roton-like dispersion with a toggle between reciprocity

and nonreciprocity. (b-d) Reciprocal roton-like dispersion relations enabled by H1 =

H2 = H or equivalently P1 = P2 = P . The change of the ℜ(ω) band is shown

when H = 20 , H = 23.5, and H = 24, or numerically P = 3.08 × 104 kgm2/s2,

P = 4.09 × 104 kgm2/s2 and P = 4.2 × 104 kgm2/s2 under the continuum limit.

The black and red curves represent the eigenfrequency simulation and continuum

theory. The color fills are the FFT results. (e) Nonreciprocal roton-like dispersion

relations enabled by H1 = 26 and H2 = 23 or equivalently P1 = 4.34× 104 kgm2/s2

and P2 = 3.95× 104 kgm2/s2 under the continuum limit. Comparison of the complex

spectra between simulation and continuum theory is shown. (f) The normalized

FFT-based intensity spectrum for the propagation of two opposite directions within

the nonreciprocal roton-like configuration are shown at 2 kHz where the nonreciprocal

roton-like behavior takes place. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.7 Experimental demonstration of nonreciprocity. (a) Schematic of the experi-

mental setup including a 1st-order nonlocal metabeam of 10 unit cells modulated by 9

active loops. The incidences from both sides are excited by two PZT-5A transducer

connected to an amplifier and arbitrary function generator (AFG). The measurement

and post-processing are implemented by a commercial laser vibrometer (PSV-400).

The excitation is a 10-cycle tone burst signal centered at 20 kHz. (b) The schematic of

the electrical control circuit system and the circuit diagrams of individual components.

The experimental specifications are listed in TABLE 4.1. (c,d) Measured transient

velocity wave signal at the output for both incident directions. Red and blue represent

the left and right incidences, respectively, while the gray ones are reference signals

when the active control is switched off. The results with active control are normalized

the the maximum of the respective references. (e) Comparison of the inverse decay

length κ between the experiments (symbols) and numerical transient analyses (solid). 69
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5.1 (a) 2D elastic metamaterial enabled by inner resonators with a lattice size a. (b)

Passive unit cell that carries conventional mass supports symmetric force-acceleration

relationship: the accelerations align always with the resulting forces. In the unit cell,

the inner (black) and outer (blue frame) masses are denoted as m and M , respectively.

The Hookean bonds have spring constants k1 and k2 in the x1 and x2 directions.

(c) Active unit cell that carries odd mass comes with asymmetric force-acceleration

relationship: orthogonal accelerations generates non-orthogonal forces, and the process

is asymmetric. In addition to the Hookean k1 and k2, the unit cell conceptually

consists of a stretch strain sensor which measures u2−U2 in x2 and an active Hookean

bond which generates an active force Fa = (u2 − U2)ka in x1. (d) Kinetic energy

cycle of the odd mass with M̂12 ∈ R and being positive. The particle indicates the

velocity trajectory for each selected value of ∆ϕ = ϕ1 − ϕ2 from 0 to 2π/ω; see Eq.

(5.8). Clockwise and counterclockwise trajectories of the particle encircle nonzero area

on the map, indicate nonzero work done, and correspond to kinetic energy generated

and lost, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2 Active unit cell design for odd mass density. (a) The metamaterial unit cell, which

exhibits odd mass, consists of a structured steel frame and four PZT patches (PZT-

5A) with two of them being stretch sensors and the other being actuators. The

asymmetric actuation is achieved by a programmable controller which connects the

sensors and actuators and is characterized by a transfer function H. (b, c) The

schematic illustration of deformation distribution reveals how the two orthogonal

motions are coupled in an asymmetric way: The sensors sense the vertical deformation

and feed the sensing voltage processed by the controller to the actuators for horizontal

actuation. While the reverse is forbidden owing to the absence of a horizontal

sensor. (d) Numerically obtained effective mass density tensor M̂ij , normalized

with M̂0 = M̂11(ω = 0.3ωr1). The frequency is normalized with the first resonance

frequency ωr1 = 2π × 10.81 kHz. The evaluated mass densities are normalized with
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5.3 (a) Design of the unit cell for 1D nonreciprocal wave coupling. The dimensions are

L = a/2 = 10 mm, L1 = 9 mm, Lb1 = 10 mm, w1 = 0.5 mm, w2 = 7 mm, w3 = 0.75

mm, g1 = 1.5 mm, and g2 = g3 = 1 mm. The four piezoelectric patches (PZT-5A, 5

mm × 0.55 mm ×0.55 mm) are highlighted in blue. (b) Dependence of the normalized

magnitude |M̂12|/M̂0 on arg(H) and |H|, where ρ0 denotes the static principal mass

density. (c) Dependence of the phase arg(M̂12) on arg(H) and |H|. The results are

considered at 10 kHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.4 Experimental demonstration of 1D nonreciprocal wave coupling enabled by odd mass.

(a) Schematic of the experimental test bed that includes an active metamaterial with

odd mass on a steel host beam. Transverse (t) incidence generates both transverse (t)

and longitudinal (l) transmission, whereas the reverse is forbidden. The green arrows

define the wave polarization u and v. The inset displays a photo of the metamaterial

functional unit. In the experiment, the incidence from the left is excited by two

symmetrically placed PZT-5A patches connected to an voltage amplifier and arbitrary

function generator (AFG). The measurement and post-processing are implemented by

a commercial laser vibrometer system (PSV-400). (b,c) Measured normalized transient

velocities (b) v̇ and (c) u̇ at the output under a transverse incidence when the active

control is OFF (red solid) and ON (blue dashed). (d,e) Numerical normalized transient

velocities (d) v̇ and (e) u̇ at the output under a longitudinal incidence when the active

control is OFF (red solid) and ON (blue dashed). The excitation in both cases is a

15-cycle tone burst centered at 11.3 kHz. All measured data are normalized with the

maximums of their own incidence (green). . . . . . . . . . . . . . . . . . . . . . . . . 79

5.5 1D nonreciprocal wave coupling. (a) Schematic of the transverse incidence. (b)

Analytical and numerical comparison for both transmissions. (c) Transient analysis

results for the output displacements u and v for longitudinal and transverse modes,

respectively. (d) Schematic of the longitudinal incidence. (e) Analytical and numerical

comparison for both transmissions. (f) Transient analysis results for the output

displacements u and v for longitudinal and transverse modes, respectively. . . . . . . 81

5.6 Experimentally measured normalized velocity field distributions for 1D nonreciprocal

wave coupling. The output velocities u̇ and v̇ for longitudinal and transverse modes

are displayed without and with the active control. . . . . . . . . . . . . . . . . . . . 81
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5.7 Energy phase transition at θ1 = 0 by tuning β̂. (a) Real and (b) imaginary parts

of wave numbers q in function of β̂. The EP is indicated, together with the energy-

unbroken and energy-broken phases. (c) Real and (d) imaginary parts of Ũ2/Ũ1 of

eigenvectors in function of β̂. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.8 Energy phase transition. (a) Iso-frequency contours ℜ(q̄1) and ℜ(q̄2) for both propa-

gating modes when the system operates in energy-unbroken phases (isotropic with

β̂ = 0 and anisotropic with β̂ = 0.4), at exceptional point (β̂ = 0.5865), and in

energy-broken phase (β̂ = 0.7). q̄ is the wave number normalized with the maximum

in each case. Principal directions x̃1 and x̃2 are illustrated by rotating x1 and x2 by

θ̃1. Here, θ̃1 = π/4. (b) θ dependence of the imaginary components of wave numbers,

ℑ(q̄1) and ℑ(q̄2), for both modes correspondingly in the four representative phases

mentioned in (a). In both (a) and (b), we select λ = 37.4 GPa, µ = 27 GPa, and

M̂11 = M̂22 = 16277 kg/m3. Here, the blue and red modes correspond to those given

in Fig. 5.7. (c) The energy phase diagram in the space of θ in black (azimuthal) and

β̂ in red (radial). The yellow region is the energy-unbroken phase and supports free

wave propagation. While the dark blue regions are energy-broken phase where wave

amplification occurs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.9 Demonstration of energy phase transition and directional wave amplification. (a)

Numerically evaluated divergence fields of displacement at 16 kHz for various β̂ under

a pressure loading. (b) Numerically evaluated curl fields of displacement at 16 kHz for

various β̂ under a shear loading. In both figures, β̂ = 0 (energy-unbroken isotropic),

β̂ = ±0.29 (energy-unbroken anisotropic), and β̂ = ±1.18 (energy-broken) are achieved

with the transfer functions H = 0, H = ±0.2, and H = ±1, respectively. The 2D
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GPa) surrounded with perfect matched layers (PMLs). The point sources for the

pressure and shear excitation are realized by setting normal and tangential boundary

loads, respectively. The fields obtained from simulations are all normalized with their

own maximums. The principal direction x1 is indicated. . . . . . . . . . . . . . . . . 84
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5.11 Comparison between actual structures and homogenized media. (a) Numerically

evaluated divergence fields of displacement at 16 kHz for various β̂ under a pressure

loading. (b) Numerically evaluated curl fields of displacement at 16 kHz for various β̂

under a shear loading. In both (a) and (b), the top panels show the field distributions

of the homogenized media, whereas the bottom panels illustrate the corresponding

actual structures. The field distributions are normalized with their own maximums. 86

5.12 Comparison between actual structures and homogenized media for H = i (β̂ = 1.18i).

(a, b) Numerically evaluated (a) divergence and (b) curl fields of displacement at

16 kHz for β̂ = 1.18i under a pressure and shear loading, respectively. The field

distributions are normalized with their own maximums. . . . . . . . . . . . . . . . . 87
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Normalized curl fields of displacement at (c) M̂22/M̂11 = 0.1 and (d) M̂22/M̂11 = 2.
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the previous. The stiffness property of the odd mass regions (500 mm ×500 mm) are

consistent with that of the background in order to improve impedance matching. In

both field plots, M̂11 is selected as 16277 kg/m3. The field intensities are normalized

with their own maximums at 16 kHz. On the bottom of each field plot, the theoretical

principal direction θ̃1, defining x1 and predicting maximum amplification steering
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5.15 Non-Hermitian skin effect induced by odd density. (a, b) The complex spectrum when

the system operates at β̂ = 0.2 and 0.9. The squares with the hue indicating the wave

number q2 and gray circular scatters are results from PBC and OBC, respectively.

(c) Numerically computed OBC eigenmodes at β̂ = 0.2 for a finite ribbon. The

corresponding eigenfrequencies are 12.94, 15.48 and 30.30 kHz from left to right. (d)

Numerically computed eigenmodes at β̂ = 0.9. The corresponding eigenfrequencies are

27.71 + 0.324i, 27.71− 0.324i and 28.14 kHz from left to right. The top and bottom

are set with open boundary conditions. Without loss of generality, the horizontal wave

number is fixed at q1 = 1 rad/m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.16 Frequency spectrum and GBZ. (a) The frequency spectrum for PBC, OBC are from

Fig. 5.15(b). The PBC spectrum from GBZ is calculated based on Eqs. (5.49) and

(5.37). (b) Generalized Brillouin zone is calculated based on Eqs. (5.49) and (5.37). . 98

6.1 Schematic illustration of the programmable time-modulated metabeam for continuous

dynamic control of flexural wave propagation. The meta cell converts the incident

wave Ψ0(A0, ω0, ϕ0) into an arbitrary combination of transmitted wave components

ΣnΨn(An, ωn, ϕn), via a programmable feed-forward control system that exhibits time

modulation and realizes antisymmetric actuation. The terms An, ωn and ϕn denote

the field magnitude, frequency and phase of the nth-order harmonic, respectively.

The bottom layer shows the photos of the mechanical (actuators and sensor) and

the microelectronic control circuit. The piezoelectric patches (PZT-5J, lsen = dsen =

dact=10 mm, lact = 4 mm, x0 = 3 mm.) are mounted to a 3-mm-thick steel beam of

db = 11 mm via conductive epoxy. The thicknesses of the sensor and actuators are

0.5 mm and 1 mm, respectively. The slit used to diminish the interactions between

adjacent meta cells has a length of lslit = 12 mm. The microelectronic controller is

responsible for generating the time-dependent transfer function. Vs(t) and Va(t) are

the respective electrical voltages from the charge amplifier and voltage amplifier. They

follow the relationship H(t) = Va(t)/Vs(t). Reprinted figure with permission from Q.

Wu, X. D. Zhang, P. Shivashankar, Y. Y. Chen, and G. L. Huang, Physical Review

Letters, 128, 244301 (2022). Copyright (2022) by the American Physical Society. . . 103
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6.2 Linear independent control over frequency conversion from 10 to 8.5 kHz. Transmitted

displacement ratio of wave packets wnorm
t and time delay are numerically demonstrated

by sweeping (a) maximum incident displacement wnorm
i from 0.1 to 1, (b) amplitude A1

given in Eq. (6.7) from 0.13 to 1.3, and (c) phase shift ϕ1 from 0 to 2π. In each cases,

the parameters that are not swept remain unchanged as used in Fig. 6.4. Reprinted

figure with permission from Q. Wu, X. D. Zhang, P. Shivashankar, Y. Y. Chen, and

G. L. Huang, Physical Review Letters, 128, 244301 (2022). Copyright (2022) by the

American Physical Society. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.3 Experimental setup. (a) Photo of the time-modulated meta cell. (b) Photo of the

circuit. (c) Photos of the sensor and actuators. (d) Illustration of the feed-forward

control. (e) Illustration of the measurement process. In the experimental measurement,

a piezoelectric patch is attached on the left side of the beam to generate incident

flexural waves. 15-peak tone-burst signals, central frequencies are selected as 10

kHz, are generated by a signal generator (Tektronix AFG3022C) and amplified by a

high voltage amplifier (Krohn-Hite), and then employed to the beam. Blu Tacks are

attached to the both ends of the beam to absorb the reflected waves. The transverse

velocity wave fields are measured on the surface of the beam by a scanning laser

Doppler vibrometer (Polytec PSV-400). Reprinted figure with permission from Q. Wu,

X. D. Zhang, P. Shivashankar, Y. Y. Chen, and G. L. Huang, Physical Review Letters,

128, 244301 (2022). Copyright (2022) by the American Physical Society. . . . . . . . 107

6.4 Demonstrations of the frequency shifting function in three typical scenarios: 10 kHz

incidence is converted into (a) transmission of 8.5 kHz, (b) transmission of 11.5 kHz,

and (c) transmission of 8.5 + 10 + 11.5 kHz (frequency comb). The red and green

curves represent the numerical and experimental results, respectively. The black dotted

curves in the frequency spectra denote the incidence wave as the reference. Reprinted

figure with permission from Q. Wu, X. D. Zhang, P. Shivashankar, Y. Y. Chen, and

G. L. Huang, Physical Review Letters, 128, 244301 (2022). Copyright (2022) by the

American Physical Society. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.5 Frequency cancelation effect for the zero-order incidence ω0. (a) Experimentally

measured velocity fields. (b) Time-domain signals. (c) Frequency-domain signals.

Reprinted figure with permission from Q. Wu, X. D. Zhang, P. Shivashankar, Y. Y.

Chen, and G. L. Huang, Physical Review Letters, 128, 244301 (2022). Copyright

(2022) by the American Physical Society. . . . . . . . . . . . . . . . . . . . . . . . . . 110
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6.6 Frequency shifter. (a-c) Measured velocity fields, time-domain and frequency-domain

signals for the frequency shifter that shifts 10 kHz to 8.5 kHz. (d-f) Measured velocity

fields, time-domain and frequency-domain signals for the frequency shifter that shifts

10 kHz to 11.5 kHz. Reprinted figure with permission from Q. Wu, X. D. Zhang, P.

Shivashankar, Y. Y. Chen, and G. L. Huang, Physical Review Letters, 128, 244301

(2022). Copyright (2022) by the American Physical Society. . . . . . . . . . . . . . . 110

6.7 Frequency comb. (a-b) Measured time-domain and frequency-domain signals for the

frequency comb 8.5 + 10 kHz. (c-d) Measured time-domain and frequency-domain

signals for the frequency comb 10 + 11.5 kHz. (e-f) Measured time-domain and

frequency-domain signals for the frequency comb 8.5 + 10 +11.5 kHz. Reprinted

figure with permission from Q. Wu, X. D. Zhang, P. Shivashankar, Y. Y. Chen, and

G. L. Huang, Physical Review Letters, 128, 244301 (2022). Copyright (2022) by the

American Physical Society. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.8 Time-domain signals at the output of the meta-layer for transmitted first-order wave

component with various phases shift ϕ1 at 10 kHz. Reprinted figure with permission

from Q. Wu, X. D. Zhang, P. Shivashankar, Y. Y. Chen, and G. L. Huang, Physical

Review Letters, 128, 244301 (2022). Copyright (2022) by the American Physical Society.112

6.9 (a) Time-domain signals for transmitted first-order wave component at various phase

shifts. (b) Magnified view of the time-domain signal in (a) for presenting the accurate

2π phase control. The excitation frequency is 10 kHz. Reprinted figure with permission

from Q. Wu, X. D. Zhang, P. Shivashankar, Y. Y. Chen, and G. L. Huang, Physical

Review Letters, 128, 244301 (2022). Copyright (2022) by the American Physical Society.112

6.10 (a) Schematic of a phase-gradient programmable meta-layer that consists of 14 cells

and features the flexural beam steering with frequency shifts. The red arrow indicates

the phase gradient’s direction. (b) Top panel shows flexural beam steering with

the frequency shift δω = 2π × 1.5 kHz and phase gradient dϕ1/dy = 0.13π rad/m,

while the bottom shows the conversion into additional 8.5 kHz with a phase gradient

dϕ2/dy = −0.13π rad/m, respectively. Both fields are obtained at 0.7 ms in the

transient analysis. The inputs are set as 10 kHz, and the output wave directions are

indicated by the yellow arrows. Reprinted figure with permission from Q. Wu, X. D.

Zhang, P. Shivashankar, Y. Y. Chen, and G. L. Huang, Physical Review Letters, 128,
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6.11 (a) Simulation model used in the frequency-shifted beam steering simulations. (b)

Flexural field distributions at different time instants for the simulation shown in Fig.

4(b) of the main text. The color map of each figure is normalized to its own maximum.

The excitation is 10 kHz. Reprinted figure with permission from Q. Wu, X. D. Zhang,

P. Shivashankar, Y. Y. Chen, and G. L. Huang, Physical Review Letters, 128, 244301

(2022). Copyright (2022) by the American Physical Society. . . . . . . . . . . . . . . 114

6.12 (a) Schematic of the frequency-gradient programmable meta-layer that contains 20

cells and provides dynamic control over the flexural beam steering as time progresses.

The red arrow indicates the frequency gradient’s direction. (b,c) Dynamic beam

steering over time at the frequency gradients (b) dδω1/dy = 2π×4.56 and (c) 2π×9.12

kHz/m for 20 meta-layer units included. The inputs are set as 10 kHz, and the output

wave directions are indicated by the yellow arrows at each time instant. Reprinted

figure with permission from Q. Wu, X. D. Zhang, P. Shivashankar, Y. Y. Chen, and

G. L. Huang, Physical Review Letters, 128, 244301 (2022). Copyright (2022) by the
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6.13 (a) Dispersion diagram for flexural wave mode in a free plate. The hue is defined as∫∫∫
V
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E.1 (a) Schematic illustration of the supercell which represents a horizontally infinite

semi-infinite medium decorated by non-modulated (δK = 0) spring-mass oscillators

on the top surface. The discrete points represent the spring-mass oscillators. The top

surface is set free while the bottom one is set with low-reflecting boundary condition

(LRB). The two highlighted in blue are Floquet periodic boundary conditions. The

z-directional displacement and the exerted force by the oscillators are recorded and

extracted at the contact point. (b) The bulk band structure obtained from the modal

analysis of the supercell is shown in the left panel. The numerical and analytical

results agree well, except for the zone-folding curves. The mode shapes of the two

highlighted branches are also extracted. The corresponding transmission coefficient,

shows band gap for the Rayleigh wave around the resonance frequency, which exhibits

great agreement with the supercell analysis. Reproduced from Journal of the Mechanics

and Physics of Solids 146, 104196 (2021), with the permission of Elsevier Publishing. 130

G.1 Circuit diagram of the unit cell for the nonreciprocal wave coupling. The resulting

transfer function reads H(ω) = H0/(ω
2/ω2

0 +2ξω/ω0+1), where H0 = 2×108, ξ = 0.5

and ω0 = 2π × 15 kHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

G.2 (a) The photo of the PZT transducer which consists of two PZT-5A patches placed

in parallel. This arrangement allows to generate transverse incidence. (b) The photo

of the electrical control circuits, including low pass filter, voltage amplifier, summing

amplifier and charge amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
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UNPRECEDENTED WAVE CONTROL WITH ACTIVE ELASTIC METAMATERIALS

Qian Wu

ABSTRACT

The research of elastic metamaterials has received tremendous attention from both academic and

industrial communities over the past decade or so. Elastic metamaterials are a type of structured

artificial composites whose macroscopic properties are determined by their periodic subwavelength

building blocks. Due to their extreme obtainable material parameters, elastic metamaterials have been

used to illustrate numerous exotic physical phenomena such as negative refraction and superlensing.

Their potential applications include vibration and wave mitigations, waveguiding, energy harvesting,

cloaking and so forth. In recent years, passive elastic metamaterials cannot meet the needs from

modern wave functional devices, because their material parameters cannot be altered once they are

fabricated. This drawback has eventually led to the development of active elastic metamaterials,

which involves reprogrammable components and provides real time reconfigurability. Among the

existing active control strategies, shunted piezoelectric materials have received considerable attention

as they provide reprogrammable interactions between mechanical and electrical parts with large degree

of freedom. They have been utilized to enhance the performance of conventional wave manipulation

strategies such as broadband wave and/or vibration mitigations and reconfigurable wave beam

steering. In this dissertation, some prototypes of active elastic metamaterials and metasurfaces

are proposed for unconventional wave manipulation, by leveraging the circuit control concept of

shunted piezoelectric materials. Theoretical and experimental approaches are utilized for illustrating

design principles, characterizing system properties, and validating theoretical predictions. Specifically,

various types of reprogrammable reciprocal/nonreciprocal interactions are employed to break certain

symmetries in order to observe some nonreciprocal and asymmetric wave propagation behaviors.

First, a type of non-Hermitian parity-time symmetric metabeam enable by balanced positive and

negative resistance is introduced, which features unidirectional reflectionlessness at phase transition

points. Then, a space-time modulated surface of a semi-infinite medium is investigated to support

nonreciprocal frequency and mode conversions for Rayleigh waves. In addition, by leveraging the

nonreciprocal coupling between piezoelectric sensors and actuators, a nonlocal metabeam and an active

solid with odd mass density are proposed to realize nonreciprocal wave amplification/attenuation

for flexural waves in dimension one and in-plane waves in dimension two, respectively. Last, in

combination of time-dependent transfer functions and piezoelectric sensing-actuating system, a linear

active metasurface capable of independently converting a flexural incidence into arbitrary frequency

xxv



components with phases and amplitudes on demand is presented with theoretical characterizations

and experimental validations. It is emphasized that the dissertation focuses primarily on discovering

and characterizing the fundamentals of some unconventional wave manipulation strategies in sold

structures. The examples involved provide conceptual designs which could be readily transformed to

the micro/nano scales. It is also hoped that the content covered by the dissertation could pave the

ways for the development of next-generation wave control devices, in the areas of structural health

monitoring, one-way mechanical devices as well as ultrasensitive sensing.
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Chapter 1

INTRODUCTION

1.1 Acoustic and elastic metmaterials

Metamaterials are periodic artificial structures enabled by microscopic constituent units that deter-

mines the macroscopic physical manifestations of the bulk which may not be available in nature. Their

working principle is based on the local resonances of the building blocks. It requires the lattice size to

to be much smaller than the operating wavelengths. As a result, the metamaterials, the assembly of

these building blocks, are similar to continuous materials, and exhibit effective constitutive parameters

that may be flexibly tailored by structural and/or material modifications. In other words, one can

design complex microscopic building blocks so that the bulk can respond to the external stimuli in

unusual ways. The beginning of the exploration of the electromagnetic metamaterials dates back over

two decades, featuring various emergent phenomena not readily observed in nature, such as negative

refraction, hyperbolic dispersion and so forth. Unlike the metamaterials, photonic and phononic

crystals are also periodic artificial structures, but rely on Bragg scattering mechanism requiring

lattice constants on the comparable orders of operating wavelengths [1–6]. They feature relatively

broad bandgaps which have led to practical applications, such as photonic/phononic waveguides,

lasing, wave mitigation and so forth.

The first realization of acoustic metamaterials was based on a multi-phase design involving

rubber-coated lead spheres embedded within an epoxy matrix to generate strong local resonance

at extremely subwavelength scales [7]; see Fig. 1.1(a). This class of acoustic metamaterials possess

frequency-dependent effective mass density and exhibit exotic acoustic properties such as negative

mass density [8–11]. Inspired by this concept, frequency-dependent effective bulk modulus and even

doubly negative materials have been proposed to enrich the research of acoustic metamaterials [12, 13].

Acoustic metamaterials are very useful in manipulating acoustic waves governed by Newton’s law of
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Figure 1.1: Acoustic metamaterials. (a) Acoustic metamaterial enabled by rubber-coated lead
spheres embedded within an epoxy matrix to support strong local resonance at subwavelength scales
[7]. (b) Membrane-type acoustic metamaterial used to achieve multi-band acoustic absorption and
acoustic-electrical power conversion [16].

motion. For instance, membrane-type acoustic metamaterials can exhibit excellent sound absorption

and attenuation performance together with broadband operability to go beyond the mass density

law of sound attenuation [11, 14–16]; see Fig. 1.1(b). In addition, acoustic metamaterials are also

a perfect candidate for achieving omnidirectional acoustic cloaking [17]. In recent years, acoustic

metamaterials have also influenced the emergent research of elastic metamaterials (Fig. 1.2). The

mechanical local resonance that results in tunable subwavelength properties has made the elastic

metamaterial a promising candidate for many practical applications such as low-frequency vibration

mitigation, earthquake mitigation, elastic cloaking, sensing, novel elastic waveguides and so forth

[18–23]. elastic metamaterials have also been constructed to demonstrate several exotic physical

phenomena such as hyperlensing by hyperbolic dispersion, negative constitutive parameters, and

negative refraction of elastic waves [23–27].

However, the functionality of passive acoustic/elastic metamaterials supported by local resonances

is very limited, simply due to the narrowband responses and lack of reconfigurability and adaptability.

For instance, the mechanical wave mitigation and suppression with passive elastic metamaterials

are prominent only within the vicinity of the resonance frequencies. The performance dies down

quite fast as the operating frequencies deviate from the resonance frequencies. In order to tackle

this issue, mechanically reconfigurable metamaterials, responsive to various external excitation, were

used for broadband operability [28, 29]. However, the involved mechanisms usually require invasively

structural designs of host media and complicated external conditions, which is not favorable for

practical applications.
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Figure 1.2: Passive elastic metamaterials. (a) Single-phase elastic metamaterial for realizing negative
refraction of elastic waves [26]. (b) Physical realization of an elastic cloak with a polar metamaterial
[18]. (c) Elastic metamaterials for subwavelength imaging [23]. (d) A chiral elastic metamaterial
beam for broadband vibration suppression [20]. (e) An elastic metamaterial with simultaneously
negative mass density and bulk modulus [27].

1.2 Active control with shunted piezoelectric materials

To address the aforementioned issue, integrating external adaptive materials or structures into passive

elastic metamaterials has been considered as an effective non-invasive approach for accommodating

the requirements of reconfigurability and adaptability. These “smart” inclusions constitute the

so-called active elastic metamaterials whose dynamic constitutive parameters can be tuned with large

degrees of freedom in a real-time fashion.

Various approaches of using adaptive materials and structures for achieving active elastic metama-

terials have been reported. Among them, shunted piezoelectric materials have been widely explored

simply due to their strong electromechanical responses (interplay between mechanical and electrical

energy) and straightforward electronic tunability (external shunting circuits). Besides, as opposed to

those reconfigurable metamaterials with invasive designs, the use of shunted piezoelectric materials

does not necessarily requires the modification of host structures, thereby maintaining structural

integrity. As for the real-time tunability, external shunting circuits with reprogrammable electric

components, i.e., resistors, inductors and positive/negative capacitors, are adopted to modulate the

electromechanical responses of shunted piezoelectric materials. In this way, the dynamic constitutive
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Figure 1.3: Piezoelectric-based vibration and wave control strategies. (a) A broadband active approach
for controlling vibration in piezoelectric laminated structures [35]. (b) Hybrid electromechanical
phononic crystal for elastic transmission modulation [36]. (c) Passive damping of beam vibrations
with distributed piezoelectric-based electric networks [38]. (d) A periodic array of piezoelectric
patches powered by enhanced resonant shunting circuits for broadband vibration attenuation [42].

parameters of active acoustic/elastic metamaterials, namely effective moduli and mass density, can

be tuned electronically in a fairly straightforward way. The piezoelectric shunting technique was

first introduced by Forward in 1979 for dampening mechanical vibrations in optical structures

[30]. Later, Hagood and von Flotow were the first to formulate theoretically for the damping of

structural vibrations with piezoelectric materials and passive electrical networks [31]. Inspired by

these pioneering works, various control approaches involving piezoelectric materials modulated with

programmable external shunts were used to realize vibration control, wave mitigation and spatial

wave control functionalities [32–47]; see Fig. 1.3. Aside from the conventional approaches, enormous

efforts have also been devoted in developing other modern wave control strategies using piezoelectric

shunts, which appears to be more compact yet more efficient. To be specific, elastic metasurfaces

equipped with reprogrammable piezoelectric shunts can shape the transmitted and/or reflected

wavefronts upon certain incidences with electronically tunable degree of freedom [48, 49]. Thanks

to the shunted piezoelectric inclusions, a single elastic metasurface can be programmed to perform

multiple tasks, including beam steering, airy beam, focusing, and even skin cloaking, in a real-time

fashion [50]; see Fig. 1.4(a). Shaping elastic wave mode conversion has also been proved possible

with a piezoelectric-based programmable meta-boundary [51]; see Fig. 1.4(b). Moreover, a recent
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Figure 1.4: Active elastic metasurfaces enabled by reprogrammable piezoelectric shunts. (a) A
reprogrammable metasurface capable of conducting real-time control of broadband elastic rays [50].
(b) A piezoelectric-based programmable meta-boundary that shapes elastic wave mode conversion
[51]. (c) Optimal flexural wave absorption and cloaking with an active meta-layer [52].

work demonstrated optimal flexural wave absorption and cloaking with an active meta-layer powered

by programmable piezoelectric shunts [52]; see Fig. 1.4(c).

1.3 Motivations and outline

Taking advantage of the current state of art of programmable elastic metamaterial building blocks

used in conventional wave control problems, this dissertation will explore some unconventional wave

manipulation schemes in which asymmetry and nonreciprocity of elastic wave propagation will be

realized. The exotic elastic wave behaviors to be discussed will be characterized and demonstrated

using analytical, numerical and experimental approaches.

This dissertation is structured as follows. In Chapter 2, a non-Hermitian parity-time (PT )

symmetric metamaterial beam system is analytically and numerically demonstrated to support

unidirectional reflectionlessness of one-dimensional (1D) flexural wave propagation. The physical

realization of the metamaterial beam is based on piezoelectric patches with shunted circuits that

include balanced positive and negative resistances. This way, a balanced gain-loss pairs for flexural

motions are formed, and a parity-time phase transition through exceptional points (EPs) can be

observed to interpret the unidirectional reflectionlessness. In Chapter 3, a space-time modulated

metamaterial consisting of discrete spring-mass oscillators is analytically and numerically reported to

achieve one-way nonreciprocal Rayleigh wave conversion on the surface of a semi-infinite medium.

The time-reversal symmetry is effectively broken by the space-time modulation of the spring constants

in a wave-like fashion. As a result, reciprocity is broken for Rayleigh wave propagation, and the

harmonic and mode conversions are therefore asymmetric. In Chapter 4, a new class of active

metamaterial beams with nonlocal piezoelectric interactions is reported to realize nonreciprocal wave

5



amplification and attenuation and nonreciprocal roton-like behavior for flexural waves. It is shown

numerically that by properly modifying the transfer functions and order of nonlocality, the complex

dispersion relation of the metamaterial beam can be engineered with great flexibility. This in turn

leads to the emergence of one-way flexural amplification and attenuation, which is experimentally

validated. The asymmetric roton-like dispersion, realized by multiple nonlocal feed-forward control

loops, leads to multiple wave components propagating at one frequency along both directions, but

experiencing various degrees of amplification and attenuation. In Chapter 5, a new class of active solid

is introduced possessing odd/asymmetric dynamic mass density tensor owing to a non-conservative

force relation in two dimensions (2D). This concept is first physically explained by the consideration

of kinetic energy cycle of an odd-mass-density unit cell. Then, it is validated experimentally by

demonstrating a 1D nonreciprocal wave coupling between transverse and longitudinal modes in a

piezo-based sensing-actuating beam system. Additionally, the active metamaterial can perform energy

phase transition between energy-unbroken and energy-broken phases separated by EPs, which exhibits

similarities with the non-Hermitian PT symmetric systems with balanced gain and loss (Chapter

2). This intriguing phenomenon features directional in-plane wave amplification and attenuation

and lays the foundation for 2D unprecedented elastic wave manipulation. In Chapter 6, a linear

active meta-layer capable of independently converting a flexural incidence of one frequency into

arbitrary frequency components with demanded output phases and amplitudes is both theoretically

and experimentally proposed. The meta-layer is driven by a time-dependent transfer function through

bonded piezoelectric actuators and sensors to perform independent parallel operations over waves

at different frequencies. The design breaks energy conservation by pumping in electrical energy to

cancel incidence and freely emit any demanded transmitted waves. Then, the proposed meta-layers

with programmable phase and frequency gradients are adopted to realize frequency-converted beam

deflection and dynamic beam steering functions, respectively, for 2D flexural waves.
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Chapter 2

ASYMMETRIC SCATTERING OF FLEXURAL WAVES IN

A PARITY-TIME SYMMETRIC METAMATERIAL BEAM

2.1 Introduction

Non-Hermitian PT symmetric systems that possess real spectra have attracted a great deal of

attention and been intensively investigated in quantum mechanics during the past two decades

[53, 54]. EP points behaving as thresholds of phase transitions are of particular interest. For example,

below the EP, the spectrum of the system is real, corresponding to the exact PT symmetric phase.

On the contrary, beyond the EP, the system enters the PT broken phase where the spectrum becomes

complex [53]. Owing to the similarity between Schördinger and Helmholtz equations, PT symmetric

systems have been recently extensively studied in electromagnetic and acoustic devices [55–81], and

paved the way to some fascinating and unconventional applications, such as sensors with extremely

high sensitivity [76, 78, 79], unidirectional cloaks [59, 72, 77] and robust wireless power transfer [80].

The key in designing acoustic and optical PT symmetric devices is to introduce balanced loss and

gain components. In other words, the imaginary part of the refractive index is required to be an

odd function in space, while the real part is even [53–57, 59, 60, 64, 66]. Based on this strategy,

many interesting and unconventional wave phenomena have been demonstrated numerically and/or

experimentally in optics and acoustics, such as asymmetric scattering [55–57, 59, 61, 63, 64, 66, 68],

negative refraction [70, 71] and coherent perfect absorber and laser [73–75].

Metamaterials provide an appealing solution to achieving loss and gain mediums for PT symmetric

devices [45, 82, 83]. In order to realize optical loss and gain components, active materials such as

Fe-doped LiNbO3 and InGaAsP have been utilized [56, 67]. In acoustics, leaky waveguides with

multiple slits and active microphone arrays have been designed to access loss and gain [66]. In
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practice, gain components usually require active approaches, resulting in complex control systems.

To circumvent this complexity, quasi-PT symmetric devices containing only passive loss components

have been proposed. Even though those systems are not strictly PT symmetric, similar acoustic and

optical asymmetric scattering phenomena can still be observed [56, 57, 61, 68].

Nevertheless, the study on non-Hermitian PT symmetry for elastic waves in solid media is still in

the early stage. Shunted piezoelectric materials have been regarded as one of the best candidates to

achieve the elastic gain and loss because the energy conversion between mechanical and electrical

domains can be controlled by electrical circuits in real-time [21, 39, 43–45, 84–86]. Piezotronics effect

in piezoelectric semiconductors was first utilized to amplify and attenuate pressure waves in the PT

symmetric elastic system, where the asymmetric scattering (or unidirectional reflectionlessness) has

been proposed theoretically [69]. On the other hand, electrical-circuit-shunted piezoelectric ceramic

materials have been extensively applied in vibration and wave attenuation applications for decades,

where elastic energy can be transferred and absorbed by the shunted resistance [21, 39, 43, 84–86].

In addition, a tunable PT symmetric elastic system with shunted piezoelectric materials has been

investigated analytically for pressure waves [84]. With the help of the negative and positive shunting

resistances together with inductance, balanced gain and loss can be built.

In this Chapter, the PT symmetry in an elastic beam for flexural waves is explored based on

shunted piezoelectric patches. It is first presented that the PT symmetry condition for flexural

waves, based on Euler’s beam assumptions, also requires the balanced gain and loss. They are

then realized with shunted negative and positive resistances, respectively, together with a negative

capacitance for the sake of functionality amplification and storage modulus tuning. In particular,

two analytical approaches, effective medium theory and transfer matrix method, are employed to

determine effective material parameters and asymmetric scattering properties of the PT symmetric

metamaterial beam. Numerical simulations are carried out to validate analytical predictions and

demonstrate the unidirectional reflectionlessness phenomena. It is shown that the unidirectional

reflectionlessness originates from the PT phase transitions or EPs. Furthermore, tunability of EPs

is examined through selecting different spacing between piezoelectric patches and shunting circuit

parameters. The design expands material parameters governing the propagation of flexural waves

to the complex domain, and explores the asymmetric flexural wave scattering originating from the

PT symmetry. This could open new pathways to applications such as asymmetric control, enhanced

sensing, amplification and localization of flexural waves.
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2.2 Characterizations of the parity-time symmetric beam

PT symmetry condition for flexural waves and design principles

To examine the exact PT symmetry condition for flexural waves propagating in the x-direction along

a 1D thin beam, we consider Euler’s beam assumptions and the governing equation is written as

∂2

∂x2

(
Deff (x)

∂2w(x)

∂x2

)
+ ρeff (x)hb

∂2w(x)

∂t2
= 0, (2.1)

where w(x), Deff (x), ρeff (x) and hb denote the displacement field of the flexural wave, effective

bending stiffness, effective mass density and thickness of the thin beam. The PT symmetry of Eq.

(2.1) implies

P̂T̂
{

∂2

∂x2

(
Deff (x)

∂2w(x)

∂x2

)
+ ρeff (x)hb

∂2w(x)

∂t2

}
=

∂2

∂x2

(
D∗

eff (−x)
∂2P̂T̂ {w(x)}

∂x2

)

+ρ∗eff (−x)hb
∂2P̂T̂ {w(x)}

∂t2
,

(2.2)

where P̂ and T̂ are the parity and time reversal operators, respectively. Performing PT transforma-

tions in Eq. (2.2), the PT symmetry condition can be simply derived as

Deff (x) = D∗
eff (−x), ρeff (x) = ρ∗eff (−x), (2.3)

indicating that loss and gain of flexural waves should be balanced in space. Based on the condition

illustrated in Eq. (2.3), Fig. 2.1(a) shows the schematic of a PT symmetric beam for asymmetric

scattering of flexural waves, where discrete loss and gain components are distributed along the beam

in a manner that follows an odd function respect to a point. Without loss of generality, ρeff is

assumed as real values in the study. We focus on the physical realization of the complex effective

bending stiffness to induce the loss and gain of flexural waves. For this purpose, two piezoelectric

patches are bonded onto a host beam and each patch is shunted with a negative or positive resistors

(Rsh or −Rsh) and a negative capacitor Csh connected in parallel [Fig. 2.1(b)]. In particular, the

negative resistance, −Rsh, aims to constitute the gain component, whereas the positive resistance,

Rsh, aims to constitute the loss component. The negative capacitance is mainly responsible for

amplifying the gain and loss effects and, at the same time, tuning the storage modulus. In general,

both negative resistance and negative capacitance can be physically attained by negative impedance
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Figure 2.1: (a) Schematic of the non-Hermitian PT symmetric beam for asymmetric flexural wave
scattering. Unidirectional reflectionlessness is illustrated in the figure. (b) Physical realization of
the PT symmetric beam with piezoelectric patches shunted with negative and positive resistances
together with a negative capacitance connected in parallel. The insets highlighted in red and blue
illustrate the physical realization of the electrical shunting components. Reproduced from The
Journal of the Acoustical Society of America 146, 850 (2019), with the permission of AIP Publishing.

converters (non-Foster circuits) [insets of Fig. 2.1(b)]. The resulted effective negative impedance can

be analytically determined

Zeff = −Z (2.4)

where Z denotes a positive electric impedance element. In the design, Z is a positive resistance

Rsh or a positive capacitance C0 for the realization of a negative resistance −Rsh or a negative

capacitance Csh = −C0, as illustrated by the insets of Fig. 2.1(b).

Note that the negative capacitance is technically not equivalent to the inductance [84]. Adding

inductance to the shunting circuit will produce electrical resonance, which makes the resulted effective

parameters and its related wave behavior highly frequency-dependent. On the other hand, using

negative capacitance can prevent the frequency-dependency and achieve exceptional points at multiple

frequencies in the PT symmetric beam. Since gain and loss components are purely controlled by

shunting circuit parameters, the system designed possesses a huge potential for real-time and remote

tuning of asymmetric scattering of flexural waves.

10



.

Figure 2.2: (a) Loss or gain unit cell used in effective medium theory and transfer matrix method.
(b) Schematic of the PT symmetric metamaterial beam used in transfer matrix method. Reproduced
from The Journal of the Acoustical Society of America 146, 850 (2019), with the permission of AIP
Publishing.

Analytical characterizations

To characterize the asymmetric scattering of flexural waves within the PT symmetric metamaterial

beam with shunted piezoelectric patches, the scattering matrix of a finite PT symmetric metamaterial

beam is derived first based on the transfer matrix method (TMM) and its effective material parameters

is then retrieved using the effective medium theory (EMT). Plane stress assumptions are considered

in the study.

For the unit cell structure shown in Fig. 2.2(a), thicknesses and lengths of the host beam

and piezoelectric patches are denoted as hb, hp and Lb, respectively. The shunting impedance is

represented by Zsh. Considering traction-free boundary conditions on top and bottom surfaces of
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the metamaterial beam, linear constitutive relations of piezoelectric patches can be simplified and

written as

S1 = sE11T1 + d31E3,

D3 = d31T1 + εT33E3,

(2.5)

where S1 and T1 represent the normal strain and stress along the x-direction, respectively, and D3,

and E3 represent the electric displacement and electric field along the z-direction, respectively. sE11,

d31; and eT3 3 are the compliance coefficient under constant electric field, dielectric constant under

constant stress and piezoelectric coefficient, respectively. For the unit cell shown in Fig. 2.2(a), the

displacement field along the x-direction, u, can be assumed as the combination of the displacements

at the mid-plane of the host beam in the form of

u(x, z) = u0(x)− z
∂w

∂x
, (2.6)

where u0 represents the displacement along the x-direction. A linear electric field distribution and

its corresponding electric potential are assumed as

E3(x, z) = z · a(x) + b(x),

V (x, z) = −
[
a(x)

2
z2 + b(x)z + c(x)

] (2.7)

where a, b, and c are the distribution functions which can be obtained through piezoelectric governing

equations and electric boundary conditions. By combining Eqs. (2.5)-(2.7) and considering the

electrical governing equation ∂D3/∂z = 0, the distribution functions a, b, and c, and the electric

potential on the upper electrode Vupper can be determined, respectively, as

a =
d31

sE11ε
T
33 − d231

∂2w

∂x2
,

b = −Vupper

hp
− a

2
(hb + hp) ,

c = −h2
b

8
a− hb

2
b,

Vupper =
iω d31

sE11
Zsh

∫ Lb

0

(
∂u0

∂x − hp+hb

2
∂2w
∂x2

)
dx

1 + iωCT
p (1− k231)Zsh

(2.8)

where k231 = d231/s
E
11ε

T
33 is the electromechanical coupling coefficient and the capacitance of the

piezoelectric patch, CT
p = εT33Lb/hp

Integrating stress components over the thickness of the beam with respect to the mid-plane in
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the host beam, the bending moment, normal and shear forces in the unit cell can be obtained as

M = I
∂2w

∂x2
− J

∂u0

∂x
− FVupper ,

N = K
∂u0

∂x
− J

∂2w

∂x2
+GVupper,

T = I
∂3w

∂x3
− J

∂2u0

∂x2

(2.9)

where

I =
Eh3

b

12
+

6hbh
2
p + 3h2

bhp + 4h3
p

12sE11
+

h3
pd

2
31

12sE11
(
sE11ε

T
33 − d231

) ,
J =

h2
p + hbhp

2sE11
, K = Ehb +

hp

sE11
, F =

(hb + hp) d31
2sE11

,

G =
d31
sE11

,

and E denotes the Young’s modulus of the host beam. Based on Eq. (2.9), equations of motion for

coupled flexural and longitudinal waves are derived as

I
∂4w

∂x4
− J

∂3u0

∂x3
+ ρ̄

∂2w

∂t2
= 0

K
∂2u0

∂x2
− J

∂3w

∂x3
− ρ̄

∂2u0

∂t2
= 0

(2.10)

in which ρ̄ = ρbhb + ρphp. Here ρb and ρp are the mass density of the support beam and the

piezoelectric material, which are given in Table I. General solutions to Eq. (2.10) can be found as

u0 =

6∑
n=1

Ānβne
γnx,

w =

6∑
n=1

Āne
γnx

(2.11)

where Ān are arbitrary constants, γn are the roots of the characteristic equations given by Eq. (2.10)

and βn = (Iγ4
n − ω2ρ̄/(Jγ3

n). Substituting Eq. (2.11) into Eq. (2.8), the electric potential on the

upper electrode of the piezoelectric patch can be rewritten as

Vupper =

6∑
n=1

iω d31

sE11
Zsh

(
βn − hb+hp

2 γn

) (
eγnLb − 1

)
1 + iωCT

p (1− k231)Zsh
. (2.12)

Similarly, for host beam sections without piezoelectric patches, longitudinal and flexural wave
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components are decoupled and can be simply written as

u
(b)
0 =

6∑
n=5

Ā(b)
n eγ

(b)
n x

w(b) =

4∑
n=1

Ā(b)
n eγ

(b)
n x

(2.13)

in which Ā
(b)
n are arbitrary constants, and

γ
(b)
1,2 = ±i 4

√
12ρbω2

Eh2
b

, γ
(b)
3,4 = ± 4

√
12ρbω2

Eh2b
, and

γ
(b)
5,6 = ±i

√
ρbω2

E

To construct transfer matrices, a vector Yi = [w, ∂w/∂x,M, T, u0, N ]T is then defined where i = b or

p representing host beam sections or shunted piezoelectric beam sections, respectively. With the help

of Eqs. (2.11-2.13), Eq. (2.9) can be rewritten in the form of

Yp = BpAp

Yb = BbAb

(2.14)

where the characteristic matrix Bi and the vector Ai representing the complex wave amplitudes are

shown as

Bp(x) =



a11 a12 a13 a14 a15 a16

a21 a22 a23 a24 a25 a26

a31 a32 a33 a34 a35 a36

a41 a42 a43 a44 a45 a46

a51 a52 a53 a54 a55 a56

a61 a62 a63 a64 a65 a66


and

Bb =



1 1 1 1 0 0

γb
1 γb

2 γb
3 γb

4 0 0

Eh3
b

(
γb
1

)2
/12 Eh3

b

(
γb
2

)2
/12 Eh3

b

(
γb
3

)2
/12 Eh3

b

(
γb
4

)2
/12 0 0

Eh3
b

(
γb
1

)3
/12 Eh3

b

(
γb
2

)3
/12 Eh3

b

(
γb
3

)3
/12 Eh3

b

(
γb
4

)3
/12 0 0

0 0 0 0 1 1

0 0 0 0 Ehbγ
b
5 Ehbγ

b
6


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where

a1n = 1

a2n = γn

a3n = Iγ2
n − Jβnγn − FVuppere

−γnx

a4n = Iγ3
n − Jβnγ

2
n

a5n = βn

a6n = Kβnγn − Jγ2
n +GVuppere

−γnx

Based on Eq. (2.14) and applying continuity boundary conditions, the transfer matrix M i of the

unit cell, where i = G or L, is derived as

Ab (x+ Lb) = B−1
b Bp (x+ Lb)P pB

−1
p (x)BbAb(x) = M iAb(x) (2.15)

where P p is the propagation matrix of the shunted piezoelectric beam section and reads

P p = diag(eγ1Lb , eγ2Lb , eγ3Lb , eγ4Lb , eγ5Lb , eγ6Lb)

Then the global transfer matrix for an array of m unit cells illustrated in Fig. 2.2(b) then reads

MTMM =
(
MGP

−1
b MLP

−1
b

)m
(2.16)

in which P b is the propagation matrix of the host beam sandwiched by the gain and loss sections,

and is given by

P p = diag(eγ
b
1L, eγ

b
2L, eγ

b
3L, eγ

b
4L, eγ

b
5L, eγ

b
6L)

To obtain the scattering matrix, an incident flexural wave with unitary displacement amplitude is

prescribed on the left or right background beams as



tl(r)

0

tel(r)

0

tpl(r)

0


= MTMM

l(r)



1

rl(r)

0

rel(r)

0

rpl(r)


(2.17)
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where the subscripts denote the incident direction, and the superscripts “e” and “p” represent

the evanescent flexural and the propagating longitudinal waves, respectively. Here, MTMM
l =

(MGP bMLP b)
m

for the transmission from the left side, while MTMM
r = (MLP bMGP b)

m
for

the opposite. Solving the first, second, fourth, and sixth equations involved in Eq. (2.16) gives the

scattering matrix

STMM =

 tl rr

rl tr

 (2.18)

for flexural waves.

Next, we determine the effective mass density ρeff and effective bending stiffness Deff for the

beam section with a shunted piezoelectric patch.37 Note that the size of the unit cell should be

sufficiently small compared to the wavelength in order for effective medium theory to work properly.

For the unit cell structure shown in Fig. 2.2(a), the physical quantities on the right edge (x = Lb)

are related to that on the left edge (x = 0) as

Yb (Lb) = T bbYb(0) (2.19)

in which the value of x in the schematic of the unit cell is set to be 0, and the transfer matrix reads

T bb = Bp (Lb)P pB
−1
p (0) (2.20)

To determine the effective mass density, the transverse harmonic displacement field at the left

(x = 0) and right (x = Lb) boundaries of the metamaterial unit cell is prescribed by Wpre, where the

rotational angle and longitudinal displacement is set to zero at these two boundaries. A commercial

finite element software COMSOL Multiphysics is then used to solve the harmonic problem, and the

reaction forces are calculated at boundaries. The effective mass density can be determined according

to the following expression:

ρeff =
2T l(0)

ω2WpreLbhb
, (2.21)

where T l denotes the calculated reaction force at the left edge of the unit cell.

To determine the effective bending stiffness, the harmonic rotational angles at the left (x = 0) and

right (x = Lb) boundaries of the metamaterial unit cell are assumed as φpre and −φpre, respectively.

The transverse displacements are fixed at zero for both the boundaries. We release the longitudinal

displacement at the boundaries on either one side or two sides (the longitudinal force is set to be

zero) such that the global reaction bending moments on the boundaries can be naturally obtained
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Parameters Values Parameters Values
Lb 20 mm cE11 126 GPa
Eb 70 GPa cE12 79.5 GPa
hb 1.6 mm cE13 84.1 GPa
hp 0.5 mm cE33 117 GPa
ρb 2700 kg/m3 cE44 23 GPa
ρp 7600 kg/m3 cE66 23.25 GPa
e15 17 C/m2 d31 -2.74 ×10−12

e31 -6.55 C/m2 εS11 1700 ε0
e33 23.3 C/m2 εS33 1470 ε0
L 200 mm εT33 3443 ε0

Table 2.1: Unit cell geometrical and material parameters.

with respect to the rotational center, where effects of the longitudinal displacement are decoupled.

Specifically, the longitudinal displacement on the left boundary (x = 0) of the unit cell is fixed and

the longitudinal force on the right boundary (x = Lb) is set to be zero, where the obtained reaction

bending moment with respect to the rotational center can be used for the effective bending stiffness

calculation. After solving the harmonic problem numerically, the effective bending stiffness can be

determined according to the following equation:

Deff =
M (r) (Lb)

2φpre
(2.22)

where M (r) represents the reaction bending moment.

The explicit expressions of the effective parameters calculated from matrix operations are too

complicated and impractical to be given here. In fact, solving matrix numerically for reaction force

T l and the reaction bending moment M (r) at boundaries of the unit cell is much easier. Note

that, in the linear region, those reaction force and reaction bending moment are proportional to

Wpre and φpre, respectively. In light of this, effective properties are independent on the prescribed

displacement/rotation, which is consistent with the effective medium theory. In the next subsection,

the effective material parameters obtained with the EMT will be compared with the numerically

calculated ones for model validations. The results will demonstrate how the shunting circuits can

realize desired loss and gain components for flexural waves. After that, the TMM will be used to

characterize the scattering properties of the shunted piezoelectric metamaterial beam.

Effective material parameters

In the study, the PT symmetric beam contains piezoelectric patches bonded on an aluminum beam.

Half of them are shunted with negative capacitance and negative resistance connected in parallel
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Figure 2.3: Analytically calculated and numerically simulated effective material parameters: (a)
normalized effective mass density ρeff = ρb; (b) Real and (c) imaginary parts of the normalized
effective bending stiffness Deff = Db. The solid curves correspond to the loss while the dashed to
the gain. Reproduced from The Journal of the Acoustical Society of America 146, 850 (2019), with
the permission of AIP Publishing.

with the shunting impedance Zsh = −Rsh/ (−RshiωCsh + 1) to amplify waves, whereas the rest are

shunted with negative capacitance and positive resistance connected in parallel with the shunting

impedance Zsh = Rsh/ (RshiωCsh + 1) to attenuate waves. We define αN = Csh/C
p
T to represent the

shunted negative capacitance. The unit cells are arranged in the fashion that satisfies PT symmetry

condition indicated in Fig. 2.1.

To quantitatively characterize the PT symmetric beam, effective mass density and effective

bending stiffness of the shunted piezoelectric beam section are calculated analytically based on Eqs.

(2.21) and (2.22) and compared with numerical simulations in Fig. 2.3. Material and geometric

parameters used in the study are given in TABLE 2.1. The negative capacitance ratio αN , and

the magnitudes of the positive/negative resistances are chosen to be −0.8 and 1000 Ω, respectively.

Numerical simulations are conducted with COMSOL Multiphysics, where plane stress assumptions

are applied. In the study, we employ a weak formulation on the upper boundary of the piezoelectric

patch, where the electrical impedance is shunted. Implementing an external impedance to the

electrode on the surface of the piezoelectric patch poses a constrain on the potential and free charge

relation ∫
∂Ω

Q̇ · ndA =
VA

Zsh
(2.23)

where Q and VA denote the free charge density and the applied potential on the electrode. Therefore,

the weak formulation on this boundary reads

∫
∂Ω

δVAQ · ndA =
δVAVA

iωZsh
(2.24)
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Figure 2.4: (a) Real and (b) imaginary parts of the effective bending stiffness with continuously
changed Rsh at 0.5 kHz. (c) Real and (d) imaginary parts of the effective bending stiffness with
continuously changed Rsh at 1 kHz. Reproduced from The Journal of the Acoustical Society of
America 146, 850 (2019), with the permission of AIP Publishing.
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As shown in Fig. 2.3(a), the effective mass densities of the metamaterial beam, ρeff , with both

positive (denoted by ”Loss” in the legend) and negative resistances (denoted by ”Gain”) are the same

and nearly constant over the frequencies from 0.1 to 1kHz. Note that imaginary parts of effective

mass densities, ρeff , are small enough to be negligible. In Figs. 2.3(b) and 2.3(c), the normalized

effective bending stiffness of the metamaterial beam, Deff /Db, is shown, where Db = Ebh
3
b/12 is the

bending stiffness of the beam section without piezoelectric patch. Deff with positive and negative

resistances are conjugate pairs, indicating that the storage stiffnesses are the same, while the loss

stiffnesses are opposite, being able to compose balanced loss and gain units required by the flexural

wave PT symmetry condition in Eq. (2.3). It should be noted that the effective bending stiffness is

frequency dependent thanks to the presence of the resistance in the shunting circuits. This can be

easily checked with Eq. (2.12). When only the capacitance appears in Zsh, ω is cancelled. Whereas,

in the presence of resistance, ω cannot be cancelled anymore. In particular, the normalized storage

stiffnesses are around 2.5 for the frequencies from 0.1 to 1kHz, and the magnitudes of loss and gain

stiffness gradually increase as the frequency increases from 0.1 to 1kHz. Overall, good agreement

between analytical and numerical results is clearly seen, validating the proposed EMT model. Note

that small discrepancies of the effective mass density and effective bending stiffness can be attributed

to the assumptions used in the analytical model such as linearized displacement and electric fields

along the thickness direction.

To further characterize the effective bending stiffness of the metamaterial beam controlled by the

shunting circuit, Figs. 2.4(a) and 2.4(b) show analytically calculated real and imaginary parts of

the normalized effective bending stiffness by continuously changing the negative capacitance and

the resistance. In the calculations, the frequency is selected as 0.5kHz, and other parameters are

left unchanged as those in Fig. 2.3. Only positive resistance is used for loss characterizations. As

illustrated in Figs. 2.4(a) and 2.4(b), when Rsh is sufficiently small, the shunting circuit is nearly

shorted, producing nearly constant bending stiffness with zero loss, no matter what kinds of negative

capacitances are used. By gradually increasing Rsh, the effects of the negative capacitance become

more prominent, i.e., the real part of the bending stiffness can be changed from positive to negative

values near αN = −0.89, and the loss is strong, which results in a large material mismatch with

respect to the background medium. However, extremely large resistance will suppress the loss

properties (not shown in the figure), as an infinitely large impedance will make the circuit open, and

only the negative capacitance is left. By changing the frequency to 1 kHz [Figs. 2.4(c) and 2.4(d)],

both the real and imaginary bending stiffnesses are in the same patterns as those in Figs. 2.4(a) and

2.4(b), and only the gradients with respect to the circuit parameters become a little bit larger.
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As can be found from Figs. 2.3 and 2.3, the requirements on material parameters of the PT

symmetric beam can be fully satisfied by the metamaterial with different shunting circuits, namely

positive and negative resistances. In addition, the material parameters, including both the real and

imaginary parts, can be flexibly tuned to extremely large regions through the circuit control.

2.3 Unidirectional reflectionlessness and parity-time phase

transition

Scattering matrix

To characterize wave transmission and reflection properties of the PT symmetric metamaterial beam,

one pair of loss and gain components is first considered and illustrated in Fig. 2.5(a). The design

contains two piezoelectric patches. Each of them is connected with a negative capacitance and a

positive/negative resistance in parallel. The transmission and reflection coefficients are calculated

analytically and numerically and shown in Figs. 2.5(b)-2.5(d). In analytical calculations, the TMM is

applied. In numerical simulations, two perfectly matched layers (PMLs) are attached to the two ends

of the host beam to suppress boundary reflections, and other boundaries are left free, as shown in

the top panel of Fig. 2.6. To generate propagated flexural waves, a point load is applied on the host

beam on the left or right side of the sample. In the study, Lb = 45 mm, and the distance between

the two patches, L, is selected as 200 mm. Other geometric and material parameters used in the

calculations are the same as those used in Fig. 2.3. The negative capacitance ratio αN and the

magnitudes of the positive/negative resistances are chosen to be −0.855 and 1900Ω, respectively.

As shown in Figs. 2.5(b)-2.5(d), good agreement can be found between the TMM and numerical

simulations. Figure 2.5(b) shows the amplitude of transmission coefficient |t| for the incidences from

the left and right sides of the PT symmetric beam.

Since the PT symmetric beam does not break reciprocity, the transmission coefficients |t| are

identical for the two incidences. For the case studied in Fig. 2.5(a), transmission amplitudes fluctuate

around 1 from 0.1 to 1kHz. It is interesting to note that the reflection coefficients |rr| and |rl| for

the incidences from the left and right sides of the PT symmetric beam are asymmetric, i.e., their

amplitudes shown in Figs. 2.5(c) and 2.5(d) are not equal. In particular, several zero reflection

points (dips) are clearly seen in the figures when the flexural wave is incident from one direction,

whereas the reflection is non-zero when incident from the other direction, indicating unidirectional

reflectionlessness (reflection is zero for the incidence from one side, while the reflection is nonzero
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Figure 2.5: (a) Schematic of the PT symmetric metamaterial beam with one pair of loss and gain
components. (b-d) Analytically calculated and numerically simulated amplitudes of (b) transmission,
(c) left reflection and (d) right reflection coefficients. Two of the unidirectional reflectionlessness
points (0.706 and 0.805 kHz) are denoted by green lines. Reproduced from The Journal of the
Acoustical Society of America 146, 850 (2019), with the permission of AIP Publishing.

.

Figure 2.6: Top: Schematic of the PT symmetric metamaterial beam in numerical simulations.
Bottom: Simulated flexural wave field |w| at two unidirectional reflectionlessness points. The arrows
indicate the propagation directions of different wave components. The blue (I), yellow (T), and
red (R) arrows correspond to the incidence, transmission, and reflection, respectively. Reproduced
from The Journal of the Acoustical Society of America 146, 850 (2019), with the permission of AIP
Publishing.
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Figure 2.7: Analytically calculated phase angles of transmission, left reflection and right reflection
coefficients. Reproduced from The Journal of the Acoustical Society of America 146, 850 (2019),
with the permission of AIP Publishing.

when incident from the other side, which is different from the unidirectional transmission). To see

the unidirectional reflectionlessness, flexural wave field, |w|, from numerical simulations at two of

those unidirectional reflectionlessness points (706 and 805 Hz) are presented in Fig. 2.6. The figures

are stretched vertically to help see the field distributions more clearly. As shown in the figures, when

the incident frequency is selected at 805 Hz, no reflection is found for the flexural wave incident from

the right, whereas the reflection is clearly seen for the flexural wave incident from the left, where

interference patterns are produced. However, when the incident frequency is selected at 706 Hz,

no reflection is found for the incidence from the left, whereas the reflection is clearly seen for the

incidence from the right. Similar wave phenomena can also be found at 202, 310, and 435 Hz, which

are not shown in the figure. In addition, it can be found from Fig. 2.6 that the transmission is unitary

at those unidirectional reflectionlessness points (green dashed lines at 706 and 805 Hz), making the

PT symmetric beam perfectly transparent. This property can be applied in designing one-way cloaks

of flexural waves [59, 72, 77].
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In addition to the unique features in amplitudes of transmission and reflection coefficients, their

phase angles also present interesting properties that are shown in Fig. 2.7. It can be found from the

figure that the phase differences between transmission and reflection coefficients are always π/2, and

the two reflection coefficients are either in phase or out of phase. The transition points are exactly at

the unidirectional reflectionlessness points in Fig. 2.5. When the two reflections are in-phase, |t| is

less than 1. Whereas, when they are outof-phase (shaded areas), |t| is greater than 1. To gain more

insights into the transmission and reflection coefficients, the generalized conservation law of the PT

symmetric beam is derived. Thanks to the PT symmetry, the transfer matrix must satisfy [74, 81]

M−1 = M∗. (2.25)

From Eq. (2.25), the generalized conservation law can then be derived [81],

|T − 1| =
√
RLRR, (2.26)

in which T = |t|2, RL = |ri|2 and RR = |rr|2 denote transmittance, left and right reflectance,

respectively. According to Eq. (2.26), when T < 1, T +
√
RRRL = 1, the net dissipation or

amplification in the PT symmetric beam is zero, considering the same two incidences from the right

and left sides of the PT symmetric beam. On the other hand, when T > 1, the transmitted power

is always greater than the input power, and T −
√
RRRL = 1. Furthermore, at the unidirectional

reflectionlessness points, the transmittance must be equal to 1 [Eq. (2.26)], which coincides with the

findings in Fig. 2.5 There also exist several points where RL = RR accidentally occurs. We notice in

Fig. 2.5 that those points with RL = RR can be in regions where T < 1(0.233 and 0.51kHz) and

regions where T > 1(0.375 and 0.766kHz).

To characterize the properties of the PT symmetric beam, eigenvalues s1,2 and corresponding

eigenvectors S̄1,2 of the scattering matrix are calculated analytically and shown in Fig. 8. Figures

2.8(a) and 2.8(b) present amplitudes and phases of the two eigenvalues, respectively. Compare with

Fig. 2.5, when T < 1, the amplitudes of the two eigenvalues are unitary [|s1,2| = 1 in Fig. 2.8(a)].

Whereas, when T > 1, the amplitude of one of the eigenvalue is less than 1, while the amplitude

of the other one is greater than 1 (shaded area). It is important to notice that the two eigenvalues

coalesce (both the amplitudes and the phases are equal) at the unidirectional reflectionlessness

points. In Figs. 2.8(c)-2.8(f), the real and imaginary parts of the first and second components of

the two eigenvectors are shown. At the unidirectional reflectionlessness points, the two eigenvectors
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Figure 2.8: Analytically calculated (a) amplitude and (b) phase of the two eigenvalues. Analytically
calculated (c) real and (d) imaginary parts of the first components of the two eigenvectors. Analytically
calculated (e) real and (f) imaginary parts of the second components of the two eigenvectors.
Reproduced from The Journal of the Acoustical Society of America 146, 850 (2019), with the
permission of AIP Publishing.
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Figure 2.9: Analytically calculated log10 (RL/RR) with different distances separating two piezoelectric
patches. Reproduced from The Journal of the Acoustical Society of America 146, 850 (2019), with
the permission of AIP Publishing.

coalesce again, indicating that the unidirectional reflectionlessness points of the non-Hermitian PT

symmetric beam are exceptional points (EPs), where only one possible state exists. In addition, when

the amplitudes of two eigenvalues are unitary, the two eigenvectors satisfy P̂T̂ S̄1,2 = ±S̄1,2, which

corresponds to the PT exact phase. On the other hand, when the amplitudes of two eigenvalues are

not unitary, P̂T̂ S̄1,2 = ±S̄2,1, corresponding to the PT broken phase. The phase transition points

are exactly the EPs or the unidirectional reflectionlessness points. Furthermore, the unidirectional

reflectionlessness observed in Fig. 2.5 can also be explained by the eigenvectors. For instance,

considering the EP at 0.435kHz [green dots in Figs. 2.8(c)-2.8(f)], the first components of the two

eigenvectors are zero, indicating that the reflection for the right incidence is zero, which agrees with

the reflection coefficients in Fig. 2.5(d).
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Figure 2.10: Analytically calculated log10 (RL/RR) by continuously changing (a) Rsh and (b) αN .
Reproduced from The Journal of the Acoustical Society of America 146, 850 (2019), with the
permission of AIP Publishing.

Tunability of the PT symmetric metamaterial beam

In this section, the tunability of EPs is shown by changing the spacing between the two piezoelectric

patches (Fig. 2.9) and implementing different circuit parameters, i.e., resistance and capacitance

(Fig. 2.10). In the figures, the quantity log10 (RL/RR) characterizing the asymmetric reflection is

calculated. As a result, small or large values will represent the unidirectional reflectionlessness points

or the EPs.

The two reflection coefficients with different distances between the two piezoelectric patches, L,

are calculated analytically and shown in Fig. 2.9. It can be seen that when L = 0, only two EPs

(one dip and one peak in the blue curve) are observed at the frequencies between 0.1 and 1kHz.

Increasing L, the frequencies of EPs as well as the frequency difference between EPs are decreased

such that the EPs are tuned to different frequencies. Here, the EPs can be regarded as anisotropic

transmission resonances with unitary transmission and asymmetric reflection [81]. Increasing the

length therefore reduces the resonance frequencies. In particular, when L = 400 mm, nine EPs are

found at the frequencies between 0.1 and 1kHz.

In Fig. 2.10, the frequency tunability of the EP is demonstrated by continuously changing

the negative capacitance and the negative and positive resistance. Figure 2.10(a) shows the ratio

log10 (RL/RR) by continuous increasing Rsh, where αN = −0.855. Six EPs are clearly seen, when

Rsh is less than 7kΩ. By increasing Rsh, the frequencies of the two EPs near 400 and 800 Hz diverge

and then become gradually closer. A new EP emerges between the other two EPs near 200 Hz, when

Rsh is greater than 7 kΩ. The frequency tunability become negligible for Rsh greater than 7 kΩ.

In Fig. 2.10(b), Rsh is selected as 10 kΩ, and αN is modulated from −1 to −0.5. As shown in the

figure, when αN is less than −0.8, the EPs can be tuned across nearly the entire frequency range of
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interest. Whereas, with αN greater than −0.8, they become convergent and lack tunability, which is

due to the small variation of the modulus within this range. Note that the two kinds of EPs cross

around αN = −0.92, where the modulus has a pole with changes to the negative capacitance. Based

on the results demonstrated in Fig. 2.10, both the frequency and reflection bias ratio of EPs can be

flexibly tailored by properly selecting the shunting circuit parameters.

2.4 Summary

In conclusion, the non-Hermitian PT symmetric beam based on shunted piezoelectric patches has

been proposed. The realization of gain and loss components relies on the introduction of negative and

positive resistances and the negative capacitance into external shunting circuits. Asymmetric flexural

wave scattering is investigated analytically and numerically with the focus on the unidirectional

reflectionlessness. The scattering matrix and its eigenvalues and eigenvectors are studied in detail

for the analyses of exact and broken PT phases. EPs are then identified at the unidirectional

reflectionlessness points. Last, the tunable EPs are demonstrated through varying the spacing

between the piezoelectric patches and the shunting circuit parameters. This design could be

promising in various applications, such as asymmetric wave control, enhanced sensing, amplification,

and localization of flexural waves.

The content of this section is reproduced from The Journal of the Acoustical Society of America

146, 850 (2019), with the permission of AIP Publishing.
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Chapter 3

NON-RECIPROCAL RAYLEIGH WAVE PROPAGATION

IN SPACE–TIME MODULATED SURFACE

3.1 Introduction

Rayleigh waves, discovered in 1885 by Lord Rayleigh, are a type of surface acoustic waves (SAWs) that

propagate over relatively long distances at the free surfaces of solids with amplitudes exponentially

decaying perpendicular to the surfaces. Research on effectively controlling and manipulating Rayleigh

waves has been gathering great attention from both scientific and engineering communities for decades.

Several well-studied strategies have been proposed across multiple research fields involving designs of

distributions of simple artificial micro- and macro-structures such as pillars, grooves, resonators, etc,

on the surface of the host medium [87–96]. Advantages of doing so are twofold. First, the existence of

these external inclusions does not require any modification on the geometrical or material properties

of the continuum, keeping the host media intact. Second, tunable features can be easily realized

in experimental implementations. As an outstanding example, the use of phononic crystals and

mechanical metamaterials provides extra degree of freedom in tailoring the propagating behaviors of

Rayleigh waves, such as scattering performance, polarization control and so on. Further, existing

developments in novel SAW devices enable a wide range of applications in sensing [97–102], rf filters

[103], duplexers [104] and seismic wave mitigation [92, 105, 106].

Despite decades of research on the manipulation of Rayleigh waves, most studies are by far focused

on reciprocal systems with time-reversal symmetry, where scattering does not necessarily rely on

propagation sense. To break time-reversal symmetry, a novel class of materials, called dynamic or

spatio-temporal materials [107], in the fields of acoustics and elasticity have been vastly investigated

in both discrete and continuous systems. This type of materials features properties which not only
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change in space but also in time in a wave-like fashion referred to as a “pump wave”. Some studies

have theoretically and numerically unveiled unprecedented wave-transmission behavior in dynamic

materials [108–113]. Examples of applications include directional mode converters [114, 115], selective

acoustic circulators [116], directional wave reflectors [117, 118] and directional wave accelerators [110].

However, very little theoretical work has been conducted on realizing non-reciprocal propagation of

Rayleigh waves with space-time modulations.

In this Chapter, an extensive study of Rayleigh wave propagation in a 2D semi-infinite medium

bound by an array of space-time modulated spring-mass oscillators is performed. Note that as

suggested by Casadei et al. [119] and Chen et al. [43, 120], modulating the stiffness of oscillators is

technologically feasible using programmable piezoelectric components. To characterize the propagation

of Rayleigh waves in the medium involving both continuous and discrete interfaces, an analytical

model is developed with the aid of asymptotic method and coupled mode theory to obtain modified

dispersion relations of the Rayleigh wave due to the wave-like modulation. Theoretical findings

for non-reciprocal wave transmission are validated by transient numerical simulations. Specifically,

one-way wave mode conversion is quantitatively characterized. Various relevant physical quantities,

such as gap widths and interaction lengths, are estimated so as to guide future experimental

implementations. This study can lead to further advance of Rayleigh wave-based devices to enable

asymmetric propagation of energy, topological insulators and one-way waveguiding.

3.2 Theoretical modeling: asymptotic approach

Rayleigh wave dispersion in space-time modulated media

Let us start with a brief review of Rayleigh wave solution in a 2D isotropic semi-infinite medium. In

that context, the governing Navier’s equations are expressed as

[(2µ+ λ) ∂2
x + µ∂2

z ]u+ (µ+ λ) ∂x∂zw = ρ∂2
t u, (3.1)

(µ+ λ) ∂x∂zu+ [(2µ+ λ) ∂2
z + µ∂2

x]w = ρ∂2
tw, (3.2)

where µ and λ denote Lamé constants of the medium and u and w represent the displacement fields

along the x− and z−directions, respectively. Operator ∂i with i denoting x, z or t is a partial

derivative operator with respect to i, and will be used throughout the paper. By introducing the

potentials u = ∂xΦ+∂zΨ and w = ∂zΦ−∂xΨ, the Navier’s equations (3.1) and (3.2) are reformulated
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as

∇2Φ− 1

c2L
∂2
tΦ = 0, (3.3)

∇2Ψ− 1

c2T
∂2
tΨ = 0, (3.4)

where cL =
√
λ+ 2µ/ρ and cT =

√
µ/ρ are the phase velocities for longitudinal (L) and transverse

(T) waves. By solving Eqs. (3.3) and (3.4) and applying stress conditions at the free boundary:

σzz = σxz = 0, the non-dispersive Rayleigh wave solution at the free surface can be obtained as

Φ = D1 (z) exp [i (q0x− ω0t)] , (3.5)

Ψ = D2 (z) exp [i (q0x− ω0t)] , (3.6)

where q0 is the wave number along x-axis and ω0 is angular frequency. In this Chapter, instead of

using k, we use q to represent the wave number for the sake of clarity since K will be designated to

represent the spring stiffness constant.

In the study that follows, instead of the above free surface, we will consider Rayleigh wave

propagation at a space-time modulated surface by introducing an array of linear oscillators connected

at the surface to the semi-infinite medium, as shown in Fig. 3.1. Each linear oscillator is composed of

a mass m and spring constant K and the spacing between oscillators is set to be ls. Now a wave-like

modulation on the spring constant is assumed as Km = K + δK cos (qmx− ωmt) = K + δK (ξ),

with δK, qm and ωm being the modulation amplitude, modulation wave number and modulation

frequency, respectively. The modulation wavelength can be subsequently defined as λm = 2π/qm.

The modulation amplitude δK is assumed to be small compared with K but great enough to break

reciprocity.

The perturbative approach based on the amplitude of the modulation then is utilized to investigate

how an incident Rayleigh wave is transformed by the modulation [108–110]. In the presence of

perturbation, the governing equations given in Eqs. (3.1) and (3.2) are modified accordingly as

[(2µ+ λ) ∂2
x + µ∂2

z ]ũ+ (µ+ λ) ∂x∂zw̃ = ρ∂2
t ũ, (3.7)

(µ+ λ) ∂x∂zũ+ [(2µ+ λ) ∂2
z + µ∂2

x]w̃ = ρ∂2
t w̃, (3.8)
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Figure 3.1: Schematic of non-reciprocal propagation of Rayleigh waves at the space-time modulated
surface of a semi-infinite medium. An array of oscillators, including masses m and modulated
spring constants Km(x, t) = K + δK cos (qmx− ωmt) with K being unperturbed spring constant,
are attached to the surface of the medium. Each of the oscillators is separated with one another by a
spacing ls. The oscillators only vibrate along the z-direction. The isotropic continuous medium is
described by a set of elastic parameters (µ, λ and ρ). The Rayleigh waves propagate at the surface in
a non-reciprocal way that the transmission or reflection depends on directions of incidence at specific
frequencies. Reproduced from Journal of the Mechanics and Physics of Solids 146, 104196 (2021),
with the permission of Elsevier Publishing.

where ũ = u0 + δu+ · · · and w̃ = w0 + δw+ · · · . The perturbed potential functions can be written as

Φ̃ = D̃1 (ξ, z) e
i(q̃x−ω̃t), (3.9)

Ψ̃ = D̃2 (ξ, z) e
i(q̃x−ω̃t), (3.10)

in which q̃ = q0 + δq+ · · · , ω̃ = ω0 + δω+ · · · , and D̃i = Di + δDi + · · · , and δq, δω and δDi are the

first-order correction terms to q0, ω0 and Di, respectively. According to the Bloch theorem, the two

potential functions are 2π-periodic functions of ξ. Therefore, we can decompose the leading-order

amplitude of the potential function into D1 (ξ, z) =
∑

j∈Z D
j
1(z)e

ijξ, where j denotes the Fourier order

and Z denotes the collection of integer numbers. By keeping the terms of leading-order correction

and considering only the jth-order harmonic component, substituting Eq. (3.9) into the perturbed
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Eqs. (3.3) and (3.4) leads to

∂2
zD

j
1 (z) +

(
ω2
j /c

2
L − q2j

)
Dj

1 (z) = 0, (3.11)

∂2
zD

j
2 (z) +

(
ω2
j /c

2
T − q2j

)
Dj

2 (z) = 0, (3.12)

where ωj = ω0 + jωm and qj = q0 + jqm. On the other hand, the equation of motion of surface

oscillators can be written as

m∂2
tZ

j +Km

(
Zj − wj

z=0

)
= 0, (3.13)

where Zj is the jth-order harmonic component of the mass displacement up to the leading-order

correction. We assume a traveling wave solution reading Z =
∑

j∈Z Z
j
0e

ijξei(q̃x−ω̃t) for the oscillator

mass motion and keep only the leading-order terms. Following the supplementary material of [89] and

the process detailed in Appendix A, we obtain the characteristic equation of leading-order correction

which describes the Rayleigh wave dispersion in the presence of space-time modulated oscillators.

(
mω2

j

K
− 1

)(2− ω2
j

q2j c
2
T

)2

− 4

√
1−

ω2
j

q2j c
2
T

√
1−

ω2
j

q2j c
2
L

 =
m

Aρ

ω4
j

q3j c
4
T

√
1−

ω2
j

q2j c
2
L

. (3.14)

This equation is exactly the one obtained in [89], but with higher-order terms. For the Rayleigh

wave propagating along −x direction, the dispersion relation can be easily obtained by conducting

similar derivation theretofore. Moreover, we can define an eigenmode φj(ωj , qj) which describes the

mode shape of Rayleigh waves in the presence of the spring-mass oscillators by matching the stress

conditions as

φj(ωj , qj) =

uj

wj

 =

iqj(e−qjpjz − 2
sjpj

rj
e−qjsjz)

−qjpj(e
−qjpjz − 2

rj
e−qjsjz)

 , (3.15)

where rj = 2 − ω2
j /c

2
T q

2
j , pj =

√
1− ω2

j /c
2
Lq

2
j , and sj =

√
1− ω2

j /c
2
T q

2
j . The displacement of the

oscillator mass Zj
0 accordingly reads

Zj
0 =

Ω2qjpj
ω2
j − Ω2

(
1− 2

rj

)
, (3.16)

where Ω =
√
K/m represents the resonant frequency of the unperturbed oscillators. The dispersion

diagram is calculated in Fig. 3.2 from Eq. (3.14) for j equal to 0 and +1. In general, when the

pump wave has its first N Fourier components non-zero, j can take integer values between −N and

N . The hatched area represents the bulk modes which mainly survive in the bulk region of the
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semi-infinite medium and hence are of less interest in this work. For the fundamental harmonic

φ0(ω0, q0) in absence of modulation, a large band gap generated by the local resonance of oscillators

can be witnessed. The lower branch goes towards the resonance frequency Ω as q increases, while the

upper branch approaches gradually the non-dispersive Rayleigh dispersion curve (ω = cRq) which is

not shown here. With modulation turned on, the first-order harmonics φ1(ω−1, q−1) and φ1(ω1, q1)

appear with linear shifts of dispersion curves, with respect to the fundamental mode φ0. In Fig. 3.2,

points of no-intersection correspond to uncoupled cases in which only mode φ0 exists, leading to the

eigenmode

φ(ξ) = V0φ
0, (3.17)

where V0 is the linear amplitude of φ0. This means physically that the incident mode φ0 will

not get scattered while propagating in the space-time modulated area. On the other hand, points

of intersections φ0 ∩ φ±1 correspond to coupled cases where more than one eigenmodes exist.

Accordingly, the eigenmode reads

φ(ξ) = V0φ
0 + V±1φ

±1e±iξ, (3.18)

which is the sum of a pair of coupled modes with the amplitudes V0 and V±1 respectively. Figure

3.2 graphically illustrates three pairs of coupled modes denoted as A, B and C. Taking pair A as

an example, if one leg, say φ0 ∩ φ1, is incident from left, the other leg, φ0 ∩ φ−1, is scattered

and also propagates along the −x-direction. On the other hand, φ0 ∩ φ1 will not be scattered

when incident from right. This indicates the non-reciprocal propagation of Rayleigh waves at the

space-time modulated surface. In general, when the Rayleigh wave excited at any of the coupled

modes from certain direction is scattered, it will not be scattered from the opposite direction. This

is a direct consequence of the existence of space-time modulation which breaks the time-reversal

symmetry. With the current parameters, following [121], pairs A and B correspond to veering pairs

where the two interacting branches veer without the formation of directional bandgap (scattering

and incidence in the same direction, and the group velocities of the two branches hold the identical

sign), whereas pair C is a locking pair because the two interacting branches now lock around a

directional bandgap (scattering and incidence in the opposite directions, and the group velocities of

the interacting branches hold the opposite signs). It is worth noting that the non-reciprocity here

only occurs in a narrow band of frequencies for given surface parameters. That being said, excitation

far away from these non-reciprocal pairs on the dispersion curve will only yield fundamental harmonic
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Figure 3.2: Coupling and non-reciprocity: A breaking of time-reversal symmetry produces three
pairs of coupled modes (A), (B) and (C). Pairs (A) and (B) manifest as veering pairs, while pair
(C) is the locking one. The pattern-hatched area represents the region of bulk modes, enclosed by
a shear-wave cone (blue dashed). The constitutive parameters used here are set as ρ = 2.2 g/cm3,
λ = 12.354 GPa, µ = 28.826 GPa, K = 2400 N/m, m = 1.315× 10−15 kg, and A = 1.0101× 10−12

m2. ω is normalized to the resonance frequency of oscillators Ω =
√
K/m while q is normalized to

Q = 2× 105 m−1. The modulation parameters throughout the paper are selected as ωm = Ω/4 and
qm = 1.35Q. Reproduced from Journal of the Mechanics and Physics of Solids 146, 104196 (2021),
with the permission of Elsevier Publishing.

wave whose frequency and wave number remain on the fundamental dispersion curve. To achieve

broadband non-reciprocity, one may consider the possible approach of utilizing active circuit control

to modify the modulation parameters of the surface oscillators in real-time [120]. Careful observation

reveals that the dispersion curves for φ−1 and φ1 are truncated, as shown in Fig. 3.2, because Eq.

(3.14) can only capture the propagating details of Rayleigh waves. To further determine the coupling

between coupled modes at the points of intersections, the perturbatuion method for displacement

fields of the modulated system will be conducted [108–110].

Orthogonality condition of modulated Rayleigh wave propagation

To further determine coupling of coupled modes at the intersection points of the perturbed system

involving both the continuous and discrete parts, we assume a set of perturbed plane waves along
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x-direction in terms of displacement fields as

ũ (x, z, ξ) = Ũ(ξ, z)ei(q̃xx−ω̃t),

w̃ (x, z, ξ) = W̃ (ξ, z)ei(q̃xx−ω̃t),

Z̃ (x, z, ξ) = Z̃(ξ)ei(q̃xx−ω̃t),

(3.19)

where Ũ = u + δu, W̃ = w + δw, q̃x = q0 + δq, Z̃ = Z0 + δZ and ω̃ = ω0 + δω, up to first-order

corrections. Substituting Eq. (3.19) into the governing Eqs. (3.7) and (3.8) and the perturbed Eq.

(3.13) and keeping only the first-order correction terms yields a new set of governing equations for

the forced wave propagation.

(2µ+ λ) (iq0 + qm∂ξ)
2
+ µ∂2

z (µ+ λ) (iq0 + qm∂ξ) ∂z

(µ+ λ) (iq0 + qm∂ξ) ∂z (2µ+ λ) ∂2
z + µ (iq0 + qm∂ξ)

2

 δφ

+F = ρ(iω0 + ωm∂ξ)
2
δφ,

(3.20)

−K (δZ − δwz=0) +G = m (iω0 + ωm∂ξ)
2
δZ, (3.21)

where δφ = (δu, δw)
T
. The above equations describe the first-order correction terms, i.e. δu, δw and

δZ, propagating at the space-time modulated surface. The corresponding stress boundary conditions

of first-order corrections at z =0 now become

[µ (iq0 + qm∂ξ) δw + µ∂zδu]z=0 = H, (3.22)

[λ (iq0 + qm∂ξ) δu+ (2µ+ λ) ∂zδw]z=0 = −K

A
(δZ − δwz=0) + I. (3.23)

Here, we obtain a set of modulation-induced effective body forces of the first-order correction, reading

F =

α
β

 , (3.24)

G = −δKm(ξ) (Z − w0) +m (2ω0δω − 2iδωωm∂ξ)Z, (3.25)

H = −iµδqwz=0, (3.26)

I = −δK(ξ)

A
(Z − wz=0)− iλδquz=0, (3.27)
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where

α = [(2µ+ λ) (−2q0δq + 2iqmδq∂ξ) + ρ (2ω0δω − 2iδωωm∂ξ)]u+ i (µ+ λ) δq∂zw,

β = [µ (−2q0δq + 2iqmδq∂ξ) + ρ (2ω0δω − 2iδωωm∂ξ)]w + i (µ+ λ) δq∂zu.

Equations (3.24-3.27) are functions of δq, δω and δK. Among them, Eq. (3.24) corresponds to the

effective body force applied on the continuum, while Eq. (3.25) represents the effective body force

applied on the discrete spring-mass oscillator section.

In deriving the orthogonality condition, the effective body force in the continuum is coupled

with the one in the discrete section through the stress boundary conditions of first-order corrections.

The orthogonality condition requires all the effective body forces to do zero virtual work for all

the possible eigenmodes [108–110]. By following the detailed derivation in Appendix B, we reach

eventually the orthogonality condition relating the continuous and discrete sections:

w∗
z=0

(
Q0

A
⟨G⟩ − ⟨I⟩

)
− u∗

z=0 ⟨H⟩+
∫ ∞

0

φ∗ · ⟨F ⟩ dz = 0. (3.28)

where Qj = 1 −mω2
j /(mω2

j −K), j ∈ Z. Equation (3.28) indicates the virtual work done by the

effective body forces G, I, H and F is zero. In other words, the body forces have to be perpendicular

to the eigenvector in a way to avoid increasing and unbounded oscillating amplitudes in the system

[108–110]. Based on the derived orthogonality condition of the spring-mass-decorated system, we

can further examine the couplings between the coupled modes.

Uncoupled mode

We first consider the case of a lonely uncoupled mode. Without loss of generality, the considered

harmonic here is chosen to be the fundamental mode φ0 (q0, ω0). Combining Eqs. (3.15-3.17) and

(3.24-3.27) and taking average on the resulting equations basically yield a set of averaged effective

body forces for φ0

⟨F ⟩0 =

V0 [−2q0δq (2µ+ λ) + 2ρω0δω]u
0 + i (µ+ λ) δq∂zV0w

0

V0 [−2µq0δq + 2ρω0δω]w
0 + i (µ+ λ) δq∂zV0u

0

 ,

⟨G⟩0 = 2mω0δωV0Z
0,

⟨H⟩0 = −iµδqV0w
0
z=0,

⟨I⟩0 = −iλδqV0u
0
z=0.

(3.29)
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Here, the amplitude V0 can be chosen arbitrarily by linearity. Substituting Eq. (3.29) into Eq. (3.28)

results in

I0 + iµδqw0
z=0u

0∗
z=0 + w0∗

z=0

(
2

A
mω0δωQ0Z

0 + iλδqu0
z=0

)
= 0, (3.30)

where the integration reads Ij = 1
Vj

∫∞
0

φj∗ · ⟨F ⟩j dz, j ∈ Z. Using the mode shapes in Eqs. (3.15)

and (3.16) into Eq. (3.30) and performing rearrangements yields the group velocity of Rayleigh waves

for uncoupled modes in presence of modulated spring-mass oscillators.

v0g =
δω

δq
= −a0

b0
, (3.31)

where aj and bj , j ∈ Z are functions of ωj , qj ,K and m, and read

aj = 2(µ+ λ)q2j pj
(sjpj − 1)(sj − pj)

rj(pj + sj)
− 2q2j (2µ+ λ)

(
1

2pj
− 4sjpj

rj(pj + sj)
+

2sjp
2
j

r2j

)

− 2µq2j p
2
j

(
1

2pj
− 4

rj(pj + sj)
+

2

r2j sj

)
− µq2j pj

(
1− 2

rj

)(
1− 2

sjpj
rj

)
+ λq2j pj

(
1− 2

rj

)(
1− 2sjpj

rj

)
bj = 2qjρωj

(
1

2pj
− 4sjpj

rj(pj + sj)
+

2sjp
2
j

r2j

)
+ 2qj p2jρωj

(
1

2pj
− 4

rj(pj + sj)
+

2

r2j sj

)

− 2m

A
ωjqjpj

(
1− 2

rj

)
QjZ

j

Alternatively, the expression of the group velocity can also be derived from a variation of the

dispersion relation in Eq. (3.14).

Coupled mode

Then, we investigate the coupling between two harmonics at mode φ0 ∩φ1, which corresponds to

the simplest case. We will first discuss the veering pairs (pairs A and B in Fig. 3.2), since the

coupled modes involved have the wave numbers of identical sign. In this way, the mode shape in the

continuous medium takes the form given in Eq. (3.18) while that in the discrete section is changed

accordingly as

Zj =
Ω2qjpj
ω2
j − Ω2

(
1− 2

rj

)
, j = ±1. (3.32)
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Substituting the mode shape given in Eq. (3.18) into the effective body forces given in Eqs. (3.24-3.27)

results in a new set of effective body forces for the coupled modes.

F =

α
β

 ,

G =− δK(ξ)(V0Z
0 + V1Z

1eiξ − V0w
0
z=0 − V1w

1
z=0e

iξ),

+ 2mω0δωV0Z
0 + 2mω1δωV1Z

1eiξ,

H =− iµδq(V0w
0
z=0 + V1w

1
z=0e

iξ),

I =
δK(ξ)

A
(V0Z

0 + V1Z
1eiξ − V0w

0
z=0 − V1w

1
z=0e

iξ),

− iλδq(V0u
0
z=0 + V1u

1
z=0e

iξ),

(3.33)

where

α = V0[−2q0δq (2µ+ λ) + 2ρω0δω]u
0 + V1[−2q1δq (2µ+ λ)

+ 2ρω1δω]u
1eiξ + i (µ+ λ) δq∂z(V0w

0 + V1w
1eiξ),

β = V0[−2µq0δq + 2ρω0δω]w
0 + V1[−2µq1δq

+ 2ρω1δω]w
1eiξ + i (µ+ λ) δq∂z(V0u

0 + V1u
1eiξ).

Repeating the procedures used in the uncoupled scenario for both the fundamental and first-order

harmonics yields E11 E12

E21 E22


V0

V1

 = E

V0

V1

 = 0, (3.34)

where

E11 = a0δq + b0δω

E12 = q0p0
δK

A
(1− 2

r0
)

(
Z1 + q1p1(1−

2

r1
)

)
(Q0 + 1)

E21 = q1p1
δK

A
(1− 2

r1
)

(
Z0+q0p0(1−

2

r0
)

)
(Q1 + 1)

E22 = a1δq + b1δω

(3.35)
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and
〈
δKeiξ

〉
=
〈
δKe−iξ

〉
= δK (also see Appendix C for detailed derivation). Solving the eigenvalue

problem |E| = 0 leads to first-order corrections to the dispersion curve around the coupled modes

φ0 ∩φ1.

δω =
−(a1b0 + a0b1)

2b0b1
δq ± 1

2b0b1

√
(a1b0 − a0b1)

2
(δq)

2
+ 4b0b1E12E21. (3.36)

By picking δK = 0 (unmodulated scenario), E12 and E21 in Eq. (3.35) vanish, and the above

expression (3.36) gives the Rayleigh wave group velocities v0g and v1g for the uncoupled modes φ0

and φ1, respectively. Following Eq. (3.36), the veering zone width of frequency 2δω at the critical

point (δq = 0) reads 2δω(δq = 0) = 2
√
b0b1E12E21/(b0b1). We take the two veering pairs in Figs.

3.3(a) and 3.3(b) as an example. The oscillator spacing ls is solely dependent of the area occupied by

the individual oscillator, since we fixed the thickness of the semi-infinite medium. We first plot the

intersection frequency and wave number of the fundamental and first-order harmonics in function of ls

to show that tuning ls shifts the spectral location of the intersection of the two veering branches; see

Figs. 3.4(a) and 3.4(c). As ls increases, the intersection frequency increases as well as the magnitude

of the intersection wave number. The veering zone widths 2δω at a certain ls for both pairs are also

plotted in Figs. 3.4(b) and 3.4(d) in functions of ls and the modulation strength δK. As can be seen,

at any ls, 2δω increases monotonically with the increasing δK. This can be easily concluded from

the fact that E12 and E21 are both proportional to δK based on Eq. (3.35), thereby leading 2δω to

be proportional to δK as well. On the other side, 2δω is insensitive to the variation of ls for both

veering pairs, at least within the range considered. For the non-reciprocal locking pair (pair C in

Fig. 3.2), the two legs are in opposite propagating directions, and hence perform opposite elliptical

particle motion directions for the displacement fields. In this way, the expressions of mode shapes of

the locking pair need to be accordingly corrected as

φ0 =

u0

w0

 =

iq0(eq0p0z − 2 s0p0

r0
eq0s0z)

q0p0(e
q0p0z − 2

r0
eq0s0z)


φ1 =

u1

w1

 =

iq1(e−q1p1z − 2 s1p1

r0
e−q1s1z)

−q1p1(e
−q1p1z − 2

r1
e−q1s1z)


Zj =

Ω2qjpj
ω2
j − Ω2

(
1− 2

rj

)
(3.37)

Substituting Eq. (3.37) into Eqs. (C.3-C.6) in Appendix C and simply repeating the same procedures

of deriving the veering couplings leads to first-order corrections to the dispersion curve of the locking

pair. To graphically illustrate the couplings, we plot the first-order corrections to the three pairs
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and the dispersion curve of the space-time modulated system in Fig. 3.3, with the same parameters

used in plotting Fig. 3.2 and a non-zero modulation strength δK = 0.1K. Figs. 3.3(a)-3.3(c)

illustrate how the first corrections to the dispersion curve unveil the couplings at these three pairs.

Taking the veering pair B shown in Fig. 3.3(b) as an example, when the lower-frequency point

of intersection for mode (0.668Ω, 1.469Q) is incident, it will be converted into the other mode

(0.668Ω + ωm, 1.469Q+ qm) at higher frequency within an interaction or conversion length which

will be discussed later. Generally speaking, the excitation of one of the coupled legs in the space-time

modulated medium leads to the creation of the other leg. The conversion, taking place at certain

frequencies in certain directions, will not occur in the opposite propagation direction at the same

frequency, which shows non-reciprocity due to the loss of time-reversal symmetry. On the other hand,

the interacting branches of the pairs A and B veer since both coupled modes have the wave numbers

of same signs. There is no band gap formed in the vicinity of them such that the incident waves in

principle will not be reflected within the modulation area. Specifically, the upper branch refers to

the optical branch where Z(t) and wz=0(t) oscillate out-of-phase, while the lower branch is called

acoustic branch where Z(t) and wz=0(t) exhibit in-phase vibration. Pair B exhibits the one-way mode

conversion between the acoustic mode and the optical one. By contrast, the two interacting branches

of the locking pair C shown in Fig. 3.2(c) lock and involves two band gaps about the coupled modes.

It indicates that any incidence close to one of the coupled modes will be totally reflected into the

other one within certain interaction lengths. It is worth mentioning that since the proposed system

here is weakly and slowly modulated, i.e. δK ≪ K and |ωm/qm| < cR, the locking pair is always

stable, featuring horizonal directional bandgaps. In strongly modulated systems (|ωm/qm| > cR), it

is likely for the system to be unstable to allow the existence of vertical bandgap where the frequency

is purely imaginary [122, 123]. The previous work has already demonstrated the transition from

stable to unstable bandgaps when the modulation speed or amplitude in the active system increases

[110]. Recent experimental results also proved that the presence of intrinsic losses can quench the

unstability, making the strongly modulated systems stable [124]. Lastly, we recover the dispersion

curve of Rayleigh waves in the modulated medium in Fig. 3.3(d). The dashed curves correspond

to the uncoupled dispersion curves of fundamental and first-order harmonics. The blue solid curve

represents the fixed dispersion diagram up to the first-order correction. In this work, we only consider

the first-order correction because it already yields the satisfactory prediction of dispersion curves

of coupled modes. Higher-order correction terms may enhance the wave mode coupling shown in

Fig. 3.3 to some degrees. However, their importance can almost be neglected compared with the

first-order terms because of the weak modulation considered.
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Figure 3.3: First-order corrections to the dispersion curve and the corrected dispersion relations
up to the first-order correction: A non-zero modulation δK = 0.1K enables the couplings between
different harmonics. The first-order corrections to the pairs A, B and C in Fig. 3.2 are illustrated in
(a), (b) and (c), respectively. The two shaded areas in (c) represent the two band gaps generated by
the modulation. The corrected dispersion curve of the Rayleigh wave propagation in the space-time
modulated semi-infinite medium is shown in (d), up to the first-order correction. Reproduced from
Journal of the Mechanics and Physics of Solids 146, 104196 (2021), with the permission of Elsevier
Publishing.

Transmission-type conversion

The Rayleigh wave propagating in the space-time modulated medium is converted from one harmonic

to one another in the vicinity of the coupled pairs. To characterize their mode conversion properties,

we need to discuss separately the veering pairs and locking one. This is simply because the former

pairs hold the same signs in group velocity while the latter one is opposite. For the veering pairs, we

start by defining the group velocities for the uncoupled harmonics as

v0g = −a0
b0

, v1g = −a1
b1

(3.38)
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Figure 3.4: Parametric study on the influence oscillator spacing ls and modulation strength δK
on the intersection frequency and wave number of the fundamental and the first-order harmonics
and the veering zone width 2δω. (a) and (b) correspond to the veering pair A, while (c) and (d)
correspond to the veering pair B. The red arrows in (a) and (c) indicate the increasing direction of
ls. Reproduced from Journal of the Mechanics and Physics of Solids 146, 104196 (2021), with the
permission of Elsevier Publishing.

Substituting Eq. (3.38) into Eq. (3.36) and utilizing the derivation process detailed in [110] and

Appendix D, we can conclude that at the propagation length d = π/ (2δqa) within the modulated area,

where δqa =

√[
δω
2

(
1
v0
g
− 1

v1
g

)]2
+ E12E21

b0b1v0
gv

1
g
, φ0 reaches its minimum while φ1 reaches the maximum.

Typically, the total conversion from φ0 to φ1 can be expected when Cb = 0, namely, δω = 0. In this

case, we have

δq± = ±
√

E12E21
b0b1v0gv

1
g

, C± = ±
b0v

0
g

E12

√
E12E21
b0b1v0gv

1
g

(3.39)

For the eigenmode φ0 (0.668Ω, 1.469Q) corresponding to the veering pair B propagating along the

+x-direction, we have the normalized conversion length Qd = 9.56 and the inverted amplification
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factor 1
|C| = 0.9726. To quantitatively illustrate the dependence of Qd and 1

|C| on (ω1, q1) and the

potential tunability of the one-way frequency conversion, we plot in Fig. 3.5 based on expressions

(3.39) by tuning qm and ωm. For a given input mode (ω0, q0) marked with yellow pentagrams, the

possible output modes are distributed along the dispersion curve of the uncoupled mode (red curves).

As can be seen in Fig. 3.5(a), the closer the coupled mode (ω1, q1) is to the resonance frequency of

the unmodulated oscillator, the shorter the normalized conversion length appears to be. On the other

hand, inverted amplification factor decays as the coupled frequency ω1 increases. Further, analytical

calculations about various combinations of δK and K, shown in Figs. 3.5(c) and 3.5(d), indicate that

an increase in δK leads to a decrease in the normalized conversion length Qd when K is fixed. This

can be derived from Eqs. (3.35) and (3.39) as well. By contrary, when δK is fixed, an increase in K

results in an increasing Qd. This behavior is more prominent at larger δK. On the other hand, the

variation in δK barely affect the inverted amplification factor 1
|C| , as can also be observed in Eqs.

(3.35) and (3.39). However, an increasing K magnifies 1
|C| .

Reflection-type conversion

For the locking pair C, the two wave numbers of the coupled modes are opposite in sign. In this case,

reflection-type conversion takes place. Subsequently, expression (D.2) can be corrected to

δq± =
δω

2

(
1

v0g
+

1

v1g

)
± i

√
E12E21
b0b1v0gv

1
g

−
[
δω

2

(
1

v0g
− 1

v1g

)]2
= ±iδqc + δqb (3.40)

As can be seen the first-order correction wave number are complex valued in the vicinity of ω0,

specifically for the range

|δω| ≤ 2

∣∣∣∣ 1v0g − 1

v1g

∣∣∣∣−1
√

E12E21
b0b1v0gv

1
g

(3.41)

In this way, the solution for φ0(ω0, q0) incident from the right side is, for x > 0,

φ = V0+e
−δqcx

(
φ0ei(q0x−ω0t) + (Ca + Cb)φ

1ei(q1x−ω1t)
)
ei(δqbx−δωt) (3.42)

The solution given in (3.42) indicates that at (ω0, q0) the right incidence φ0 penetrates into the

space-time modulated medium exponentially decaying to vanish within a distance of order 1/ |δqc|,

and then is reflected into φ1(ω1, q1) propagating at q1 opposite to q0. This behavior is graphically

illustrated as two band gaps at the locking pairs C, as shown in Fig. 3.3.
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Figure 3.5: Dependence of the normalized conversion length Qd (a) and the inverted amplification
factor 1

|C| (b) on (ω1, q1) for an incidence at the mode (ω0, q0), marked with yellow pentagrams.

The pattern-hatched areas denote the bulk regions, and the red curves are the dispersion curves of
the Rayleigh wave in the unmodulated system. (c) and (d) show dependence of log(Qd) and 1

|C| ,

respectively, on the variations of K and δK. Here, K0 = 2.4× 103N/m. Reproduced from Journal of
the Mechanics and Physics of Solids 146, 104196 (2021), with the permission of Elsevier Publishing.

3.3 Numerical discussions: nonreciprocal transmission and

one-way mode conversion

Prediction of asymmetric dispersion curve

To validate the analytical modeling, a transient simulation is conducted using COMSOL Multiphysics

to predict the dispersion curve in the modulated system. A 2-cycle broadband burst signal, centered at

ωc = Ω and described as A0 sin (ωct) [1− cos (ωct/2)] is used to generate Rayleigh waves propagating

in different directions, as shown in Fig. 3.6(a). The low-reflecting boundaries are adopted in the ends

of boundary to reduce reflection. On the surface, 600 oscillators are distributed uniformly with a

spacing ls = λm/20. Dispersion curve of Rayleigh wave propagation in the system with oscillators is
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numerically secured, which is also validated by analytical solution (see Appendix E). After that, the

space-time modulation is applied to 600 oscillators and numerical simulation is then conducted to

obtain time-domain signals of the Rayleigh wave at different locations. The 2D Fourier transform in

space and in time is adopted on the obtained signals to retrieve the dispersion curve with non-zero

modulation for both directions. The results are shown in Fig. 3.6(b) and great agreement with the

analytical prediction is illustrated in Fig. 3.3(d). In the figure, two non-reciprocal veering pairs A

and B discussed in the analytical section can be directly visualized. However, the locking pair C at

lower frequencies is hardly seen in Fig. 3.6(b) due to its extremely narrow band gap for the given

modulation parameters. Nevertheless, the non-reciprocal scattering is numerically witnessed here in

the vicinity of the two veering pairs on the recovered dispersion curves. Scattering of elsewhere on the

dispersion curve of fundamental harmonic will be reciprocal. Aside from the couplings between the

fundamental and first-order harmonics, we can also observe the couplings between other higher-order

harmonics. In particular, one of them is highlighted in Fig. 3.6(b) by the green window (C), which

reveals the coupled mode φ1∩φ2. This has not been discussed in detail in the analytical section since

the strengths of the higher-order couplings are relatively weak compared to the ones of lower-order

couplings, as can be seen in Fig. 3.6(b).

Non-reciprocal transmission

Numerical simulation is also conducted to confirm the non-reciprocal propagation of the Rayleigh wave,

as shown in Fig. 3.7(a). We first test the non-reciprocity at the veering pair B (0.668Ω, 1.469Q), which

corresponds to the case of the right-going Rayleigh wave by placing a modulation area comprising

of 1000 unit cells between two free surfaces. The excitation used here is once again the tone burst

signal, but with a much narrower linewidth (50 cycle) and a center frequency at 0.668Ω. The

source, highlighted as the green point in Fig. 3.7, here consists of only a single point load which

is embedded in the space-time modulation area. The excited Rayleigh wave propagates along two

opposite directions; see Fig. 3.7(a). The time-domain signals, collected at the two highlighted points,

are shown in Fig. 3.7(b) for both directions of Rayleigh wave propagation. For the right-going

incidence, i.e. along the modulation direction, the time-domain response (red in Fig. 3.7(b)) is

greatly distorted and delayed due to the coexistence of modes φ0, φ1 and even φ2 with difference

group velocities. While for the left-going incidence (blue dashed in Fig. 3.7(b)), the time-domain

signal resembles the excitation, indicating that the modulation barely functions for this direction.

The corresponding frequency spectra are illustrated in Fig. 3.7(c) through Fourier transformation
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Figure 3.6: (a) Schematic illustration of the numerical model used to retrieve the dispersion curve.
The top panel gives the time- and frequency-domain spectra of the excitation. The bottom panel
shows the numerical model, with a space-time modulation (STM) area highlighted in gray and
composed of 600 oscillators. The black dashed arrow indicates the modulation direction. Two sources
carrying the above excitation are placed, as highlighted in green. The low-reflecting boundaries
(LRBs) are applied to minimize the effects of the undesired reflected waves. (b) The recovered
dispersion curve is numerically obtained through a 2D Fourier transform. The blue dashed lines
correspond to the dispersion curve of shear bulk waves. In particular, the green windows highlight
the two pairs (A) and (B) and the coupling between the first-order and second-order harmonics
(C). The color maps of the insets are adjusted accordingly for better visualization of the details of
dispersion relation. Reproduced from Journal of the Mechanics and Physics of Solids 146, 104196
(2021), with the permission of Elsevier Publishing.
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Figure 3.7: Schematic illustrations of the simulation models. Unlike the previous case of retrieving
the dispersion diagram, there are in total 1000 spring-mass oscillators involved, and a point load,
embedded in the center of the space-time modulation area, is assigned to serve as the source. Two
points (red and blue) separating equally to the source are designated to collect the time-domain
response. The arrow denotes the direction of modulation. In this way, the red point corresponds to
the Rayleigh wave propagation along the direction of modulation while the blue one indicates the
opposite scenario. (b) presents the time-domain signals collected at the two points indicating different
directions of incidence. The corresponding frequency-domain spectra (c) are derived through Fourier
transform. The nearly total conversion of pair B takes place at the spectral position highlighted by
the circles. Reproduced from Journal of the Mechanics and Physics of Solids 146, 104196 (2021),
with the permission of Elsevier Publishing.

of the time-domain data. Comparison between the illustrated results prove the non-reciprocity at

the veering pair B. The right-going Rayleigh wave at φ0(0.668Ω, 1.469Q) nearly undergoes a total

conversion into the first-order harmonic φ1(0.668Ω + ωm, 1.469Q+ qm) and even the second-order

harmonic φ1(0.668Ω+2ωm, 1.469Q+2qm), as has been denoted by the black circles in Fig. 3.7(c). On

the contrary, the left-going Rayleigh wave at φ0 does not experience any conversion, demonstrating

non-reciprocal propagation of the Rayleigh wave in the proposed system. Figures 3.8(a) and 3.8(b)

show the harmonic frequency spectra against the oscillator positions for the two opposite propagation

directions. The spectra were produced through Fourier transform upon the time-domain data of
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displacement w collected at all the spring-mass oscillators. They reveal the harmonic conversion

process while the Rayleigh waves propagate in the two opposite directions. In Fig. 3.8(a), since

the propagation direction is indentical to the modulation speed vm, the incidence excites both the

first- and second-order harmonics (see Fig. 3.7). During the propagation within the modulated

area, the intensity of the incident fundamental harmonic component reaches the local maximum

when the first-order and second-order harmonic components reach their local minimums, and vice

versa. While for the left-going wave, no such conversion occurs, and the intensity of the incident

harmonic component remains unchanged when the wave propagates in the left direction [see Fig.

3.8(b)]. In Figs. 3.8(c) and 3.8(d), we plot the time-frequency-amplitude maps for the two receiver

stations indicated as blue and red points in Fig. 3.7. Since there always exists a trade-off between

the frequency and time resolutions, here we set the frequency resolution as 0.0233Ω, corresponding to

a time resolution of 0.1243 µs. Three different colors are used to highlight the analytically predicted

frequencies of the incident fundamental, excited first- and second-order harmonics. Figure 3.8(c)

shows the results collected at the red point (identical position of the red point in Fig. 3.7) for the

right-going wave. The incident harmonic is converted into the first-order and second-order harmonics

soon after the incidence reaches the red point. The first-order and second-order harmonic components

last longer in time at this receiver station than the incident harmonic one does since the group

velocities of the first-order and second-order harmonics are smaller than that of the incident harmonic

(see Figs. 3.3 and 3.6). In addition, along the modulation direction, the incident harmonic component

appears to be more durable in terms of time than that of the opposite case [see comparison between

Figs. 3.8(c) and 3.8(d)]. This is simply because around the veering pairs (ω0∩1, q0∩1) corrected by

equation (3.36), the dispersion curve gives smaller group velocities when compared to the uncoupled

area (ω0∩1,−q0∩1) (see Figs. 3.3 and 3.6). As for the left-going Rayleigh wave, nearly no conversion

between the incident and the higher order harmonics can be visualized [see Fig. 3.8(d)]. Note that

the results in Figs. 3.8(c) and 3.8(d) can clearly illustrate the non-reciprocal harmonic conversion,

even though the time resolution is not considered high owing to the compromise we have made

between the transient simulation efficiency and the simulation time span (currently 0.85 µs). To

better the quality of the time-frequency-amplitude maps, one can increase the simulation time span

while preserving the current simulation sampling frequency (currently 8 GHz).
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Figure 3.8: Illustration of the harmonic conversion process. (a) and (b) Evolution of the harmonic
spectra of the Rayleigh waves propagating against the oscillator position along the two opposite
directions. (c) and (d) Time-frequency-amplitude maps for the two receiver stations in Fig. 3.7.
(c) corresponds to the right-going wave collected at the red point, while (d) corresponds to the
left-going wave collected at the blue point. In (c) and (d), the blue, red and green lines represent the
frequencies of the incident fundamental, excited first-order and second-order harmonics, respectively.
The frequency resolution is taken as 0.0233Ω, which consequently leads to a time resolution of 0.1243
µs. Reproduced from Journal of the Mechanics and Physics of Solids 146, 104196 (2021), with the
permission of Elsevier Publishing

One-way mode conversion

Mode conversion of Rayleigh waves can be realized in the proposed system. The spectral relocation

of the energy of the veering pair B shown in Fig. 3.7(c) refers to an acoustic-acoustic conversion, as

can be concluded from Figs. 3.3(b) and 3.3(d). It indicates that the incidence starts from in-phase

oscillations between the displacement of oscillator mass Z and the vertical displacement of the surface

w undergoes a transition between higher-order harmonics, and still remains in-phase. As can be seen

in Fig. 3.9, at t = 0.05 µs, the system starts from in-phase oscillations between Z (blue dashed)

and 2w (red solid). As the Rayleigh wave propagates along the modulation direction (right half

of Fig. 3.9), it undergoes a mode conversion from φ0, with longer wavelength, to φ1, with shorter
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Figure 3.9: Mode conversion of pair B. The displacements of oscillator masses Z (red solid) and the
displacement 2w (blue dashed) are plotted against the oscillator position at various time instants.
For clear observation, the vertical displacement w has been magnified by 2. The green dashed line
represents the position of the source. Reproduced from Journal of the Mechanics and Physics of
Solids 146, 104196 (2021), with the permission of Elsevier Publishing.

wavelength. The oscillator mass displacements Z are obviously amplified after t = 0.2 µs due to

the fact that the generated first-order harmonics φ1 locates quite close to the resonance frequency

Ω; see Fig. 3.3. Moreover, φ1 propagates slower than φ0 does, since they differs in terms of group

velocity; see Fig. 3.3. Compared to the mode conversion case, the trivial scenario with the direction

of incidence opposite to the modulation direction exhibits neither mode conversion nor amplified

displacement Z, as can be seen from the left half of Fig. 3.9. The oscillation between Z and w

remains in-phase, once again indicating the acoustic branch. Interestingly, slow wave phenomenon

for the incidence φ0 can also be observed as can be seen from the comparison between these two

cases. The propagation speeds for two opposite directions are different. Most importantly, the

mode conversion in the proposed system is not restricted to acoustic-acoustic and the conversion

between acoustic and optical modes can be achieved by choosing appropriate modulation parameters

(ωm, λm). In Fig. 3.10, we send in a tone-burst signal centered at 1.18Ω at the green point, which
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Figure 3.10: (a) The center frequency of the tone-burst is selected so as to match pair A. Other
settings are identical to those in Fig. 3.7 except that only 900 oscillators are included and the source
is still positioned inside the modulation area but close to the right end of the modulation area. (b)
The time-domain and the corresponding frequency-domain spectrum are presented, showing the
generation of higher-order harmonics. (c) Similar to Fig. 3.9, the time-domain signals for Z (blue
dashed) and 2w (red solid) are shown in functions of oscillator position at different time instants.
The inset provides a magnified view of the initial state of the combined spring-mass semi-infinite
system. Reproduced from Journal of the Mechanics and Physics of Solids 146, 104196 (2021), with
the permission of Elsevier Publishing,

corresponds to the selection of the veering pair A (Fig. 3.3(a)). Similarly to the case of pair B,

nearly total conversion can be observed from φ0 at 1.17Ω to φ1 at 1.18Ω − ωm, as illustrated in

Fig. 3.10(b). To reveal the optical-acoustic conversion of this pair, we then plot in Fig. 3.10(c) the

transient signal against the oscillator position as we have already done for pair B in Fig. 3.9. Unlike

pair B, the system operating at pair A initiates from out-of-phase oscillations of Z and w at the

instant t = 0.05µs, corresponding to the optical mode; see the highlighted inset of Fig. 3.10(c) for an

amplified view. While the Rayleigh wave propagates along the correct direction, namely, opposite

to the modulation direction, it undergoes a conversion from the optical mode to the acoustic one

and the relative phase difference between Z and w gradually vanishes, suggesting that the system
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operates now at the acoustic mode. Also, at the output frequency 1.18Ω− ωm close to the resonant

frequency Ω, the strength of Z experiences a great amplification.

3.4 Summary

In summary, a strategy to realize the non-reciprocal propagation of Rayleigh waves and the associated

one-way mode conversion is theoretically proposed, with the help of space-time modulated spring-

mass oscillators distributed on the surface of the hosting medium. In the proposed system, the

spring constant is modulated temporarily and spatially at the same time in a wave-like fashion. The

resulting “pump wave” breaks the time-reversal symmetry, and hence gives birth to the non-reciprocal

phenomena. The interactions between this “pump wave” and the travelling Rayleigh wave deliver

a remarkable consequence that the group velocities in the vicinity of the interactions require to be

corrected accordingly. Analytical and numerical approaches well recover the perturbed dispersion

diagram in the presence of the space-time modulation. More importantly, three non-reciprocal

pairs, enabling non-reciprocal propagation of Rayleigh waves, are revealed by solving the coupling

of harmonics around the interaction points. One of them exhibits the one-way mode conversion

between the acoustic and the optical modes. Further, tunability has been investigated as well to

provide information and guidance for the potential experimental implementations in the future.

The content of this section is reproduced from Journal of the Mechanics and Physics of Solids

146, 104196 (2021), with the permission of Elsevier Publishing.
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Chapter 4

ENGINEERING NONRECIPROCAL WAVE DISPERSION

IN A NONLOCAL MICROPOLAR METABEAM

4.1 Introduction

Metamaterials are capable of creating wave-bearing and/or topological devices to manipulate elastic

and acoustic waves, such as topological wave propagation and mechanical interfacial waveguiding by

using engineered microstructures [125–129]. However, as has been mentioned in the Introduction,

passive metamaterials cannot fulfill many novel functions as practical devices because of their lack

of tunability or adaptive properties. To overcome this limitation, active and/or programmable

mechanical metamaterials composed of energy-generating microstructures with feedback control

become a promising platform to create adaptive functional and topological materials [50, 130, 131].

Active metamaterials are also non-Hermitian systems which contain non-conservative forces that

require an internal or external source of energy to be present.

In the area of active elastic metamaterials, the active spring with feedback control has been

pursued to establish non-reciprocal interactions in a mechanical lattice that emulates the non-

Hermitian Su–Schrieffer–Heeger (SSH) model [132]. To physically realize those active springs, a

1D robotic metamaterial including a combination of local sensing, computation, communication,

and actuation was suggested to break reciprocity at the level of the local interactions between the

building blocks themselves [133]. Zero-frequency edge states in the non-Hermitian topological phase

and unidirectional wave amplification were demonstrated. In contrast to the ordinary topological

band theory, non-Hermitian mechanical systems exhibit unique features such as band structure

sensitive to boundary conditions. By introducing active springs coupled with other local deformations,

non-Hermiticity of the active interaction enters the linear elasticity of a continuum solid through
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odd elastic moduli, which are active moduli that violate Maxwell-Betti reciprocity [134]. The odd

elastic moduli when combined with anisotropy can give rise to the non-Hermitian skin effect [135].

Nonetheless, the aforementioned active systems exhibit either of the following fundamental limitations:

the active nonreciprocal effects either vanish from the linear response in the quasistatic limit or

they require the presence of background sources of linear or angular momentum [131, 133, 136, 137].

To remove this obstacle, a freestanding active metabeam with piezoelectric elements and electronic

feed-forward control was developed that gives rise to odd micropolar elasticity. In addition, inspired

by those active metamaterials with local feedback interaction, 1D and 2D elastic lattices with nonlocal

feedback interactions were explored to demonstrate a series of unconventional phenomena stemming

from their non-Hermiticity [137]. However, little work has been successful in physically realizing

active metamaterials with nonlocal feedback or feed-forward control in a continuum level.

This Chapter reports the design, construction, and experimental demonstration of a freestanding

active metamaterial with nonlocal feed-forward control. The metamaterial is constructed with

piezoelectric elements mounted on a beam and controlled by nonlocal electrical circuits. The nonlocal

interaction is considered into an effective complex bending stiffness which is related to the wave

propagation direction, transfer function and nonlocal order. The proposed nonlocal micropolar

metabeam supports nonreciprocal flexural wave amplification and attenuation as well as localized

bulk modes due to their non-Hermiticity. The resulting unidirectional amplification and attenuation

of waves propagating through the metambeam is also shown. To gain intuition into the mechanics of

the metabeam, analytical modeling including continuum and discrete representations are used. The

nonlocal metabeam is also employed to engineer the anomalous wave dispersion such as tunable roton-

like dispersion. Its reciprocity can be easily maintained or broken through electrically programmable

transfer functions. The tunable nonlocal micropolar metabeam with programmable feed-forward

control could provide a platform for the investigation of topological phases of non-Hermitian systems.

4.2 Nonlocal micropolar elasticity and elastodynamics

Design of the nonlocal micropolar metabeam

The proposed structure consists of an aluminum host beam and an array of piezoelectric patches

(PZT-5A) on top and bottom of the host beam [see Fig. 4.1(a) and 4.1(b)]. The motion of the

host micropolar beam can be characterized by two independent degrees of freedom: the flexural

displacement w(x) of the midplane and the other being the rotation angle ϕ(x) of the cross section
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with respect to the vertical axis; see Fig. 4.1(c). Each PZT patch pair performs as a sensor-actuator

feed-forward loop. The actuating patches apply elongation or contraction to the top surface of the host

beam, depending on the voltage applied. Conversely, the sensing patches extract voltages from the

elongation and contraction of the bottom surface. The nonlocal interaction is realized by connecting

the (n+a)th sensor to the nth actuator through an electronic microcontroller with a transfer function

H, where a is the nonlocal order and satisfies a ≥ 1 for non-vanishing nonlocality [see Fig. 4.1(c)]. As

a result, the nth actuator exerts an external bending moment which is proportional to the bending

deformation ∂xϕ(x+ δx) at the (n+ a)th unit cell. We will demonstrate that the frequency bands

of the metabeam are complex with non-Hermiticity due to the presence of energetic gain and loss

along opposite propagation directions. Such behavior is also tunable due to the reprogrammability of

H, which can be exploited to establish multiple frequency bands with interchanging non-reciprocal

behavior.

Nonlocal micropolar elasticity

The equations of motion for a freestanding nonlocal micropolar beam, as shown in Fig. 4.1, are built

based on conservation laws. Linear and angular momentum conservation indicate

ρẅ = ∂xσzx, (4.1)

Iϕ̈ = ∂xM + σzx, (4.2)

where ρ and I are the mass density and cross-sectional moment of inertia, respectively, and σzx

and M are the shear stress and bending moment, respectively. In particular, σzx and M at x are

obtained through the general constitutive relations reading

σzx(x)

M(x)

 =

 µ(ω) Cb(ω)

Cs(ω) B(ω)


s(x)
b(x)


︸ ︷︷ ︸

local

+

µ(P )(ω) C
(P )
b (ω)

C
(P )
s (ω) B(P )(ω)


s(x+ δx)

b(x+ δx)


︸ ︷︷ ︸

nonlocal

, (4.3)

where µ and B are the shear and bending moduli of the piezoelectric metabeam without active

control. Cb and Cs are the off-diagonal micropolar moduli, the feedback “(P )” represents the moduli
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Figure 4.1: Design and mechanics of a nonlocal micropolar metabeam. (a) A photograph of
the proposed nonlocal micropolar metabeam with a programmable electronic microcontroller system
in the foreground. The host beam is 5 mm wide and 3 mm thick. It is made of aluminum (ρb=2700
kg/m3, Gb=26 GPa, Eb = 69 GPa). All the piezoelectric patches mounted on the beam are PZT-AJ
(ρp=7600 kg/m3,ϵT33 = 1900ϵ0, d31 = −1.75× 10−10 C/N, d33 = 4× 10−10 C/N, d15 = 5.9× 10−10

C/N) with a thickness of 0.64 mm, a side length of 6.4 mm and a width of 4.9 mm. (b) An illustration
of the full nonlocal metabeam, later used in the experiments, is shown in the top panel. The bottom
panel shows the schematic of a segment of the metabeam. The top and bottom piezoelectric patches
serve as actuators and sensors, respectively. They are connected beyond nonlocally by the transfer
function H. The illustrated example here corresponds to a nearest-neighbor nonlocal configuration.
The lattice constant is L = 10 mm. (c) Schematic illustration of the mechanics of the nonlocal
micropolar metabeam. The motion of the metabeam can be described by two independent micropolar
degrees of freedom: flexural displacement w and rotation angle ϕ. The (n+ a)th sensor is connected
to the nth actuator through H in a periodic way. This equivalently means the nonlocal bending at
x+ δx, where δx = aL, is modulated by H and then contributes to the local bending at x.
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induced by H(ω), and the shear deformation s(x) and the bending curvature b(x) read, respectively,

s(x) = ∂xw(x)− ϕ(x) (4.4)

b(x) = ∂xϕ(x). (4.5)

The local stress state possesses two components: the local contribution from the host beam with

piezoelectric patches and the nonlocal contribution produced by H(ω). Due to the arrangement

of sensor-actuator pairs, the nonlocal shear barely contributes to the local shear and bending at

lower frequencies, nor does the nonlocal bending to the local one, implying µ(P ) = C
(P )
s = C

(P )
b ≈ 0.

Under harmonic assumption (ω, k), Eq. (4.3) becomes

σzx(ω)

M(ω)

 =

 µ(ω) Cb(ω)

Cs(ω) Beff(ω)


s(ω)
b(ω)

 = C(ω)

s(ω)
b(ω)

 , (4.6)

where Cb, Cs ≈ 0 at lower frequencies, and Beff = B + B(P )eikδx is the effective bending modulus.

Thus far, we have used a homogeneous beam model to approximate the actual piezoelectric-based

metabeam. This presentation works well only within the quasistatic limit, where |k| is small.

Figure 4.2: Discrete spring-mass representation of the nonlocal micropolar metabeam.
(a) The discrete model consists of a central mass m with moment of inertial J , a Hookean spring kµ,
a torsional spring kB , and the lattice spacing L. The feedback from nth to the (n− a)th unit cells
is represented by p. (b) Schematic of the deformation of the nth lattice unit cell with wn and ϕn

denoting as its flexural displacement and rotation angle, respectively.
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Figure 4.3: Complex dispersion engineering for nonreciprocal amplification and attenua-
tion. (a) Complex dispersion for 1st-order nonlocal configuration. The sold curves are analytical
results from the continuum theory. The symbols represent the numerical results from a fully-coupled
Finite-element software (COMSOL Multiphysics). The inset shows two representative scenarios
featuring the nonreciprocity for the opposite propagation directions at 30 kHz. (b) Imaginary
dispersion band for the 1st-, 2nd-, and 3rd-order nonlocalities. (c) Work done by nonlocal bending,
∆W , with |P |eiΦP and δx = aL. Four situations are shown with different (ΦP , a). The signs “+”
and “-” correspond to the positive and negative ∆W . In particular, four representative states are
selected. (d) Trajectories of the selected four states in the ℜ(∆W )−ℜ(∂xΦ) space with |b| = |P | = 1.
The particle direction indicates the evolution from one end of IRZ to the other.

Nonlocal micropolar elastodynamics

Considering C is frequency independent at the quasistatic limit, we revisit the linearized continuum

equations given in Eqs. (4.1) and (4.2), where under the harmonic assumption of ei(kx−ωt) and an

59



instant control (δt = 0), the strain-stress relations read

σzx

M

 =

µ 0

0 B + P (cos kδx+ i sin kδx)


s
b

 . (4.7)

Combining Eqs. (4.1), (4.2) and (4.7) we arrive eventually at

ω4 − [
µ

I
+ k2(

µ

ρ
+

Beff

I
)]ω2 +

Beffµ

Iρ
k4 = 0. (4.8)

At a specific wave number k, we can solve for the complex ω. For the nonlocal metabeam, we

conduct numerical simulations for a unit cell using COMSOL Multiphysics to determine all the

moduli of C which are found approximately frequency independent at small |k| [138]. By selecting

properly prescribed strain boundaries and measuring the reaction forces, we empirically find the

system parameters Beff = 8.24× 104 kgm2/s2 and µ = 5.612× 109 kg/s2. The feedback coefficient

P (ω) is approximated to be P (ω) = ΓH(ω) with Γ = 7.5× 102 kgm2/s2. The normalized effective

mass density and moment of inertia are computed to be ρ = 4.776× 103 kg/m3 and I = 3.2× 10−3

kgm.

A discrete representation of the nonlocal micropolar metabeam

It is also intuitive to discretize the continuous nonlocal micropolar metabeam into a discrete model

[138]. Here, we consider a 1D lattice whose unit cell consists of a rigid mass, a Hookean spring and a

torsional spring; see Figs. 4.2(a) and 4.2(b). The vertical position and orientation of the nth rigid

mass are represented by wn and ϕn, respectively; also see Fig. 4.2(b). The Hookean spring connected

to the nth mass causes a tension force

Tn = kµ(wn−1 − wn + Lϕn−1) (4.9)

with kµ = µ/L, while the torsional spring exerts a bending moment

τn = kB(ϕn−1 − ϕn) (4.10)
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with kB = B/L. Since the metabeam is modulated by a nonlocal feed-forward control loop, an

additional bending moment τactn is added on the (n− a)th unit cell, meaning that

τactn = p(ϕn−1 − ϕn), (4.11)

where p = PeikaL/L. In this design, the considered uniform distribution of bending moment does

not necessarily cause shear force. Therefore, considering the equilibrium conditions within each unit

cell, we obtain

mω̈n = Tn − Tn−1, (4.12)

Jϕ̈n = τn − τn+1 + τactn − τactn+1 − LTn+1, (4.13)

where m = ρL and J = IL. Combining all expressions above leads to

mω̈n = kµ(wn−1 − 2wn + wn+1) + Lkµ(ϕn−1 − ϕn), (4.14)

Jϕ̈n = (kB + p)(ϕn−1 − 2ϕn + ϕn+1) + Lkµ(wn+1 − wn)− L2kµϕn. (4.15)

Note that the discrete model of the metabeam is nothing but a finite-difference version of Eqs. (4.1)

and (4.2) and should work well within the quasistatic region where small |k| is considered.

4.3 Nonreciprocity, non-Hermitian skin effect and roton-like

dispersion

Nonreciprocity and energy cycles

We first examine the complex dispersion engineering of the nonlocal metabeam. Equation (4.8)

admits four solutions with two of them being the evanescent modes and the other two the propagating

ones. We plot analytically the lowest complex band structure in the irreducible zone (IRZ) for a = 1

(1st-order nonlocality) and P = 1.384× 104 kgm2/s2 (H = 20) in Fig. 4.3(a) (see the solid curves).

The real part of the band structure ℜ(ω) is symmetric with respect to k = 0, while its imaginary

component ℑ(ω) is antisymmetric, meaning that the amplification and attenuation of the flexural

wave propagation are nonreciprocal in the x direction: flexural waves propagating in −x and +x

undergo amplification and attenuation, respectively. Numerical eigenfrequency analysis confirms this
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theoretical prediction, in spite of some discrepancies at higher frequencies due to the fact that Eq.

(4.8) works properly only for small |k|. In addition, the dispersion given by the discrete model Eqs.

(4.14) and (4.15) is also in good agreement with both numerical and analytical results at small |k|.

The nonlocal order plays an important role in controlling the number of nonreciprocal amplification

and attenuation regimes. As shown in Fig. 4.3(b), 2nd- and 3rd-order nonlocalities, corresponding

to the a = 2 and a = 3 scenarios, generate two and three nonreciprocal amplification/attenuation

regimes along a certain propagation direction, respectively.

For better understanding the wave nonreciprocity, the energy cycles of the metabeam are also

studied. Here, we assume P = |P |eiΦP . Then, the local strain and nonlocal bending can be

qualitatively expressed, respectively, as

∂xϕ ∝ e−iωt, (4.16)

∆M ∝ |P |eiΦP eikδxe−iωt. (4.17)

Then, we obtain the work done by the nonlocal bending:

∆W = ℜ


∫ T

0

iω

s

b


†0 0

0 Beff −B


s

b

 dt

 = 2π|b|2|P | sin(ΦP + kδx), (4.18)

where T = 2π/ω denotes the period. With non-vanishing nonlocality, i.e. δx = aL ̸= 0, ∆W > 0

when ΦP + kδx ∈ (0, π). This physically means that the nonlocal bending ∆M does positive work,

corresponding to a process where electrical energy is converted into the mechanical one. During

this process, the flexural propagation experiences amplification. By contrast, ∆W < 0 holds when

ΦP + kδx ∈ (π, 2π), indicating that ∆M now delivers negative work and features the attenuation

behavior of the flexural propagation since mechanical energy is now converted into the electrical

one. In the top panel of Fig. 4.3(c), we schematically show the k-dependent ∆M for ΦP = 0 and

π for a 1st-order nonlocal beam, which corresponds to positive and negative P . When ΦP = 0, a

negative k (left propagation) experiences positive work done by the nonlocal bending, indicating

amplification. As for a positive k (right propagation), the flexural waves are attenuated. This gives

exactly a physical interpretation of the nonreciprocity in the metabeam system. A sign flip of P

will flip the direction of the nonreciprocity. Alternatively, the sign of ∆W can also be visually

determined by the trajectories of the strain-stress curves within one period in a ℜ(∆W )−ℜ(∂xΦ)

plot; see Fig. 4.3(d). Moreover, the bottom panel of Fig. 4.3(c) illustrate the distribution of ∆W for
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higher-order nonlocalities with ΦP = 0 or positive P . sgn(∆W ) can well predict the nonreciprocal

attenuation/amplification bands when compared to the results shown in Fig. 4.2(b). Note that a

local control (δx = aL = 0) can also do nonzero work, namely ∆W ̸= 0. However, this ∆W causes

neither amplification nor attenuation, but either a hardening or softening of metabeam for both

directions.

Figure 4.4: Non-Hermitian skin effect. (a) Calculation of the inverse decay length κ using FEM
frequency-domain simulations (dotted) and analytical approach (solid) when P > 0 and P < 0. (b,c)
The complex dispersion bands are displayed for P < 0 and P > 0. The winding number of each
scenario ν is indicated. Comparison between the numerical simulations and continuum theory is
shown. For both scenarios, two representative modes encircled by the two loops are selected. (d) The
corresponding field distributions of the two selected modes feature the amplification and suppression
of flexural waves.
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Non-Hermitian skin effect

The nonreciprocal behavior can also be determined by inverse decay length κ, which can be analytically

obtained by solving Eq. (4.8) for k = q+ iκ with purely real ω, where the positive q is the propagation

constant. From Fig. 4.4(a), it can be found that P > 0 leads to a negative κ, corresponding to

the attenuation behavior, whereas P < 0 results in a positive κ, corresponding to the amplification

behavior. For comparison, we also obtain the numerical inverse decay length by conducting frequency-

domain simulations using a finite metabeam including 60 unit cells. We emphasize that the flexural

nonreciprocity of the metabeam can also be related to a non-Hermitian skin effect. For a complex

frequency ω, the following topological index ν, the winding number of a dispersion band, can be

defined as

ν(ω) =
1

2πi
Σα

∮ π/L

−π/L

d

dk
log[ωα(k)− ω]dk, (4.19)

in which ωα(k) denotes the frequency of the α band (in this work it is the lowest flexural band).

From a geometrical standpoint, ν(ω) counts the number of times the loops of a dispersion band

over the IRZ encircles the selected frequency. Its sign is dependent of the handedness of the loops:

ν(ω) > 0 if the rotation about the selected frequency is clockwise; ν(ω) < 0 otherwise. A non-zero

|ν(ω)| features the existence of localized bulk eigenmodes, while sgn(ν(ω)) determines which side the

eigenmodes are localized on. In Figs. 4.4(b) and 4.4(c), we plot the dispersion loops for P < 0 and

P > 0, respectively. Comparison between the simulations and continuum theory is illustrated as well

to show their good agreement for small |k|. In the two cases, one can find ν(ω) = −1 and ν(ω) = 1.

Eigenmodes encircled by the ν(ω) = −1 loop are localized on the right boundary of the metabeam,

whereas ν(ω) = 1 leads to localized eigenmodes on the left boundary; see also the confirmation given

by Fig. 4.4(d) from numerical eigenfrequency analysis.

Band tilting

The transfer function H can also involve nonzero phase difference, i.e. arg(H) ̸= 0. When arg(H) =

±π/2, H becomes purely imaginary. From Eq. (4.7), it can be seen that the effective bending

stiffness ℜ(Beff) becomes direction dependent. In particular, its imaginary part vanishes only at

kL = π/2. Similar to the nonlocal metabeam here, the reported odd-elasticity local platform with

imaginary-valued control can also exhibit directional bending stiffness, but without amplification

or attenuation across the entire IRZ, thus supporting free wave propagation. Figure 4.5(a) shows

ℜ(ω) is asymmetric when H = 40i or equivalently P = 5.1i× 104 kgm2/s2. This means that the left-
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and right-going waves exhibit different group velocities, showing band tilting phenomenon. It is also

seen that the numerical and analytical results match well at small |k|. To further examine the band

tilting, we conduct harmonic simulations for incidence from both directions at 9.211 kHz, and the

computed phase distributions of the flexural waves (arg(w) = 1i× log[w/|w|]) are illustrated in Fig.

4.5(b). The band tilting effect is numerically observed from the wavelength difference.

Figure 4.5: Band tilt induced by nonlocality. (a) The real spectrum for H = 40i is shown
accompanied by the comparison between the reference in absence of active loops (black dotted),
eigenfrequency simulation (red solid) and the continuum theory by Eq. (4.7) (blue dashed). (b)
Phase distributions of the right- and left-going flexural waves through the metabeam section at 9.211
kHz. The phase is defined as arg(w) = 1i× log[w/|w|]. Only the phase changes within the host beam
are illustrated.

Nonreciprocal roton-like dispersion

Roton dispersion relations initially found in correlated quantum systems at low temperatures were

recently developed and investigated in mechanical and acoustic systems. One of the prominent

features is multiple eigenmodes supported at a single frequency, featuring net negative energy

flows which are analogous to the so-called ”return flow”. Up to now, there have been mainly two

approaches to achieving the roton-like mechanical and acoustic bands: chiral [139] and nonlocal

interactions [140, 141]. Here, we emphasize that with the nonlocal metabeam design, both reciprocal

and nonreciprocal roton-like dispersion relations can be observed with the help of extra nonlocal

degree of freedom.

Figure 4.6(a) schematically illustrates the functional unit capable of achieve both reciprocal and

nonreciprocal roton-like behaviors. Instead of having a single nonlocal feed-forward loop, the design
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now involves two loops (P1 and P2) with the opposite nonlocal orders, leading to

Beff = B + P1e
ikδx + P2e

−ikδx. (4.20)

The idea of using two loops is to accommodate a toggle function between roton-like reciprocity and

nonreciprocity. In Figs. 4.6(b)-4.6(d), the formation of the reciprocal roton-like dispersion is first

demonstrated in a 2nd-order nonlocal configuration (a = 2), with P1 = P2 = P . Good agreement

between numerical and analytical analyses validates the theoretical model in the continuum region.

The roton-like dispersion appears when H exceeds about 20. Once it reaches roughly 23.8, the band

touches ω = 0 at a critical point at kL = 0.5π, because Beff reaches zero; see Eq. (4.8). Within this

range, only one roton minimum survives and three eigenmodes exist at a single frequency, with one

of them exhibiting negative group velocity vg. Continuing increasing H eventually induces a vertical

bandgap within which flexural propagation at certain k is forbidden. This can also be interpreted

as the emergence of negative effective bending stiffness across the certain range of k, similar to

the conventional scenarios where single or double negative constitutive parameters take place in

certain frequency ranges. Note that the numerically determined P is no longer in linear relation

with H due to the double feed-forward controls and the value selection of H, vastly different from

what we have seen in the previous sections. Overall, the roton-like behavior presented here shows

similarity with those reported in three-dimensional (3D) mechanical metamaterials, since the nonlocal

feedback control discussed here is equivalent to a reciprocal next-nearest-neighbor interaction. The

fundamental difference lies in the realizations of nonlocal interactions: the design senses the nonlocal

strain fields whereas the existing studies utilize passive reciprocal on-site interactions. Moreover,

similar to those passive designs [140], increasing the nonlocal order will also increase the number of

roton minimums.

What is more compelling is that the nonlocal metabeam is also capable of realizing nonrecip-

rocal roton-like dispersion, or in other words, a roton-like behavior with unidirectional amplifica-

tion/attenuation, which has not been reported yet. To achieve it, two unbalanced transfer functions

H1 ̸= H2 are required. As shown in Fig. 4.6(e), we plot the complex spectra for H1 = 26 and

H2 = 23 using both numerical modeling and continuum theory given by Eq. (4.7). We confirm

this novel behavior by examining the wave number dependent intensity difference between the two

opposite directions at 2 kHz, as displayed by Fig. 4.6(f); also see the inset of Fig. 4.6(f), where a fast

Fourier transform (FFT) is adopted on the spatial flexural displacements collected in an 81-unit-long

metabeam for both directions. Specifically, the magnitude of the first positive-vg mode is enhanced
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Figure 4.6: Reciprocal and nonreciprocal roton-like dispersions. (a) Schematic illustration
of the nonlocal realization of the roton-like dispersion with a toggle between reciprocity and nonre-
ciprocity. (b-d) Reciprocal roton-like dispersion relations enabled by H1 = H2 = H or equivalently
P1 = P2 = P . The change of the ℜ(ω) band is shown when H = 20 , H = 23.5, and H = 24, or
numerically P = 3.08× 104 kgm2/s2, P = 4.09× 104 kgm2/s2 and P = 4.2× 104 kgm2/s2 under the
continuum limit. The black and red curves represent the eigenfrequency simulation and continuum
theory. The color fills are the FFT results. (e) Nonreciprocal roton-like dispersion relations enabled
by H1 = 26 and H2 = 23 or equivalently P1 = 4.34 × 104 kgm2/s2 and P2 = 3.95 × 104 kgm2/s2

under the continuum limit. Comparison of the complex spectra between simulation and continuum
theory is shown. (f) The normalized FFT-based intensity spectrum for the propagation of two
opposite directions within the nonreciprocal roton-like configuration are shown at 2 kHz where the
nonreciprocal roton-like behavior takes place.

in +x due to the negative ℑ(ω). On the contrary, the second positive-vg mode and the negative-vg

one featuring ”return flow” are amplified in −x. This observation clearly verifies the validity of

the nonreciprocal roton-like mechanical behavior. Note that the switch between the reciprocal and

67



Parameters Values
R1 1 MΩ
R2 1.5 kΩ
R3 6.8 kΩ
R6 1 kΩ
R7 22 kΩ
C1 1 nF
C2 4.7 nF
C3 0.47 nF

Table 4.1: Electrical components used in the nonlocal metabeam experiments.

nonreciprocal configurations can be done simply by adjusting the nonlocal feed-forward control loops,

possessing potential tunability.

4.4 Experimental demonstration

To experimentally observe nonreciprocity, we fabricated a finite nonlocal metabeam consisting of 10

unit cells (a total length of Lt = 100 mm) and 9 active nonlocal feed-forward loops on a 6-foot-long

aluminum host beam, as shown in Fig. 4.7(a). The transfer function, which is realized by the circuits

in Fig. 4.7(b), reads

H(ω) =
H0

(iω/ω0)2 + 2η(iω/ω0) + 1
, (4.21)

where the cutoff frequency ω0 = 2π × 33.53 kHz, the damping coefficient η = 0.41 and H0 = −22.5.

This transfer function corresponds to a feedback P < 0 for H0 < 0. Based on the prediction given by

Fig. 4.3(c), left and right flexural incidences will be amplified and attenuated. In the experiments,

the probed vibration dynamics along the opposite directions confirms the nonreciprocity, as shown in

Figs. 4.7(c) and 4.7(d). The magnitude of the left propagation at 20 kHz is amplified roughly by

232%, whereas that of the right propagation is suppressed by about 40%.

To examine the inverse decay length of the metabeam, we plot the comparison between experiments

and numerical simulations using κ = ± ln(vmax
norm)/Lt for left/right-propagated waves in Fig. 4.7(e),

where vmax
norm is the maximum magnitude of the normalized velocity wave field. Good agreement

can be found between the experiments and simulations. A value of κ > 0 implies amplification

of the left-going waves with positive k. On the contrary, a value of κ > 0 implies attenuation of

the right-going waves with negative k. A closer observation of the calculated κ reveals that the

nonreciprocal amplification does not always take place within the entire spectrum. Above 23.5

kHz, both left- and right-going waves undergo suppression. This is owing to the choice of the

low-pass filter which causes a band tilt of ℜ(ω) by the nonzero ℑ(H(ω)). With a modest value of

68



H0, the nonreciprocity will occur across the entire spectrum considered, although the amounts of

amplification/attenuation would be inevitably diminished. Nevertheless, the nonreciprocity of the

nonlocal metabeam is evidently validated by the experiments. Similar observations are also available

with higher-order nonreciprocity. Specifically, more than one nonreciprocal amplification band regions

will be found [137].

Figure 4.7: Experimental demonstration of nonreciprocity. (a) Schematic of the experimental
setup including a 1st-order nonlocal metabeam of 10 unit cells modulated by 9 active loops. The
incidences from both sides are excited by two PZT-5A transducer connected to an amplifier and
arbitrary function generator (AFG). The measurement and post-processing are implemented by a
commercial laser vibrometer (PSV-400). The excitation is a 10-cycle tone burst signal centered at 20
kHz. (b) The schematic of the electrical control circuit system and the circuit diagrams of individual
components. The experimental specifications are listed in TABLE 4.1. (c,d) Measured transient
velocity wave signal at the output for both incident directions. Red and blue represent the left and
right incidences, respectively, while the gray ones are reference signals when the active control is
switched off. The results with active control are normalized the the maximum of the respective
references. (e) Comparison of the inverse decay length κ between the experiments (symbols) and
numerical transient analyses (solid).

4.5 Summary

The active metabeam enabled by nonlocal feed-forward control has been suggested in providing

a physical realization of the nonlocal micropolar elastic media. Both the continuum and discrete

models give accurate description of the complex band structure under the continuum limit. The
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nonreciprocal flexural wave amplification and attenuation are numerically demonstrated and also

experimentally validated. This peculiar wave propagation behavior can be attributed to the work

done by the nonlocal bending, which is described as the exchange between mechanical energy and

external electrical power. The non-Hermitian skin effect of the finite system is demonstrated and

interpreted by the topology of the complex dispersion band. In addition, implementing a purely

imaginary transfer function leads to the band tilting of the real spectrum. Last, by increasing

the nonlocal degree of freedom, the roton-like mechanical dispersion with tunable options between

reiciprocity and nonreciprocity is numerically verified. The nonlocal metabeam could serve as a

power platform for engineering different topological wave dispersions and investigating various types

of wave dynamics under the framework of non-Hermitian system.
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Chapter 5

ODD MASS DENSITY

5.1 Introduction

The non-Hermitian elastic systems made of active components for energetic interactions with the

environment has opened new perspectives for active material design. Significant efforts have been made

in expanding conventional continuum mechanics to accommodate systems exhibiting odd elasticity

with broken energy conservation laws, where the stiffness tensor is asymmetric [134, 135, 142]. As

has been pointed out in Chapter 4, a material displaying odd elasticity must violate Maxwell-Betti

reciprocity. This intriguing feature has been experimentally demonstrated by introducing piezoelectric

elements and motors controlled by electrical circuits into host media [132, 133, 138]. These non-

Hermitian systems with odd elasticity can also exhibit non-Hermitian skin effect in both 1D and 2D.

Additionally, they were designed to perform basic robotic manipulations such as steering motion

and forces [143]. However, all the odd metamaterials and related unconventional wave control are

concentrated on odd elasticity and their related topological wave propagation.

In this Chapter, the non-Hermitian wave phenomena that arise from an active solid with odd mass

density is examined. The mass density tensor of this solid appears to be asymmetric/odd. An elastic

metamaterial with inner resonators is equipped with piezoelectric elements mounted on supporting

beams and controlled by electrical circuits to break reciprocity between the local acceleration and active

forces along the two perpendicular directions. This approach enables asymmetric coupling between

longitudinal and transverse motions in continuum solids. The odd mass density simultaneously

breaks parity and Maxwell-Betti reciprocity. The active solid can perform energy phase transition

between energy-unbroken and energy-broken phases separated by exceptional points, in analogy to

the non-Hermitian PT symmetric systems with balanced gain and loss introduced in Chapter 2. A

1D nonreciprocal wave coupling where only transverse waves can be coupled into longitudinal ones
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but not vice versa is experimentally observed. Additionally, mechanical wave amplification and the

related non-Hermitian skin effect are also numerically demonstrated in 2D active solids. This work

paves an alternative way to realize a new class of active solids and provides design guidelines for odd

density behaviors in active solids.

5.2 Conceptualization of odd mass density

Odd mass density tensors for active metamaterials

The 2D mechanical metamaterial with inner resonators periodically distributed in the matrix has

been intensively investigated in the past decades for generating sub-wavelength bandgaps and their

unconventional wave control abilities in elastic solids [144, 145], as shown in Fig. 5.1(a). To

understand the working mechanism, effective mass density properties of the metamaterial can be

formulated by considering a mass-in-mass unit. For the passive 2D metamaterial; see Fig. 5.1(b), the

equations of motions of the inner and outer masses can be easily obtained as

Fi + (ui − Ui) ki = MÜi, (5.1)

(Ui − ui) ki = müi, (5.2)

where Fi is the external force applied on the outer mass M in xi, Ui and ui are displacements of the

outer and inner masses along the xi direction, respectively. Substituting Eq. (5.2) into Eq. (5.1)

subjected to harmonic forces, we readily obtain

Fi = −M̂ija
2ω2Uj , (5.3)

where

M̂ij =

M̂11 (ω) 0

0 M̂22 (ω)

 (5.4)

is the effective mass density tensor of the metamaterial with M̂11 (ω) = M
a2 + k1m

a2(k1−ω2m) and

M̂22 (ω) =
M
a2 + k2m

a2(k2−ω2m) , and A = a2 is the unit area. As noticed, for passive designs, the effective

mass density tensor, M̂ij , is always symmetric, i.e. M̂12 = M̂21, and the components, M̂11 and

M̂22, can be positive or negative values depending on the operation frequency ω. For the unit with
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symmetric mass density tensor, the total work done by the external force is equal to the change of

kinetic energy of the mass, which means that the mass itself neither injects nor dissipates kinetic

energy. The passive metamaterial is then a classical Hermitian system.

Consider now an active unit by installing a stretch sensor to k2 and a force actuator on top

of k1, as shown in Fig. 5.1(c). The sensed stretch u2 − U2 is fed to the actuator using an active

bond ka. The active force generated by the active bond and applied on the outer mass along the x1

direction can be written as Fa = (u2 − U2)ka. Note that ka is not necessary to be a real number.

Instead, it can be a complex number leading to phase difference between the stretch and the force Fa

for harmonic motions. As a matter of fact, the active bond builds a new relationship between the

stretch and the perpendicular force, which is absent in passive units. In addition, the active bond is

nonlocal, given that the stretch and the force are not at the same location. As a result, the active

bond induces no feedback stretch in k2 for infinitesimal deformations. The effect of the active bond

is hence feed-forward. By adding the active bond into equations of motion given in Eqs. (5.1) and

(5.2), the effective mass density tensor of the active unit can be obtained as

M̂ij =

M̂11 (ω) M̂12 (ω)

0 M̂22 (ω)

 , (5.5)

where the off-diagonal term

M̂12 = − kaω
2m2

a2(k1 − ω2m)(k2 − ω2m)
(5.6)

characterizes the relationship between the acceleration and the external force perpendicular to the

acceleration. It can be easily seen that M̂12 is linearly controlled by the active bond ka and regulated

by the two resonance modes along the two perpendicular directions, as both the sensing and actuation

are resonance-dependent.

Anisotropy and energy cycle

Interestingly, the effective mass density tensor of the active unit is asymmetric, M̂12 ≠ M̂21. In

the design, the acceleration along the x1 direction does not induce an external force along the x2

direction, because no sensors along the x1 direction and no actuators along the x2 direction are

placed, and the feedback from the active bond is absent. Consequently, M̂21 = 0. It is useful to split

M̂ij into two tensors: a symmetric (even) mass density tensor, M̂e
ij , and an antisymmetric (odd)
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.

Figure 5.1: (a) 2D elastic metamaterial enabled by inner resonators with a lattice size a. (b) Passive
unit cell that carries conventional mass supports symmetric force-acceleration relationship: the
accelerations align always with the resulting forces. In the unit cell, the inner (black) and outer (blue
frame) masses are denoted as m and M , respectively. The Hookean bonds have spring constants k1
and k2 in the x1 and x2 directions. (c) Active unit cell that carries odd mass comes with asymmetric
force-acceleration relationship: orthogonal accelerations generates non-orthogonal forces, and the
process is asymmetric. In addition to the Hookean k1 and k2, the unit cell conceptually consists of a
stretch strain sensor which measures u2 − U2 in x2 and an active Hookean bond which generates an
active force Fa = (u2 − U2)ka in x1. (d) Kinetic energy cycle of the odd mass with M̂12 ∈ R and
being positive. The particle indicates the velocity trajectory for each selected value of ∆ϕ = ϕ1 − ϕ2

from 0 to 2π/ω; see Eq. (5.8). Clockwise and counterclockwise trajectories of the particle encircle
nonzero area on the map, indicate nonzero work done, and correspond to kinetic energy generated
and lost, respectively.
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mass density tensor, M̂o
ij ,

M̂ij = M̂e
ij + M̂o

ij =

M̂11 M̂e
12

M̂e
21 M̂22

+

 0 M̂o
12

−M̂o
12 0

 , (5.7)

where M̂e
12 = M̂o

12 = M̂12/2. The even part of the mass density tensor, M̂e
12, modulates anisotropy

of the effective mass density tensor in the active metamaterial. This can be understood by finding

principal effective mass densities of M̂e
ij along principal directions through rotational coordinate

transformations. Thus, M̂e
12 is a parameter contributing to mass anisotropy of the active metamaterial.

The odd part of the mass density tensor, M̂o
12, demands a force always perpendicular to the

acceleration. This is a direct consequence of the active bond that, under some conditions, can inject

or dissipate energy into or from the active metamaterial. To see this characteristics, we assume

M̂o
12 ∈ R, U̇1 = V̄1sin (ωt+ ϕ1), and U̇2 = V̄2sin (ωt+ ϕ2). The work done by the external force in

one cycle of oscillations reads

WF =

∫ 2π/ω

0

M̂o
ijÜiU̇jdt = −2πM̂o

12V̄1V̄2 sin(ϕ1 − ϕ2). (5.8)

On the other hand, the induced kinetic energy due to M̂o
ij is always zero. Balance of energy then

requires WF +WI = 0, where WI is the internal energy gain or loss caused by the active bond. In

particular, when U̇1 and U̇2 are in-phase or out-of-phase, WF = WI = 0 and the active bond is in a

silence mode without energy exchange. The effect of the active bond is only seen in the symmetric

part of the mass, M̂e
ij . Other than these two specific cases, the active bond will do positive or

negative work. When WF > 0, the active bond will absorb energy from the active metamaterial. On

the other hand, when WF < 0, the active bond will pump energy into the active metamaterial. The

total energy absorbed or pumped is proportional to M̂o
12V̄1V̄2 and in a sine relationship with the

phase difference ∆ϕ = ϕ1 − ϕ2 between U̇1 and U̇2 [Fig. 5.1(d)]. Note that the energy transfer can

happen under specific conditions, such that phase transitions and exceptional points are foreseen. In

this sense, the active metamaterial now becomes a classical Non-Hermitian system with energy loss

and gain.
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5.3 Physical realization and 1D nonreciprocal wave coupling

Physical realization

To realize odd mass density tensors, we propose a design of an active elastic metamaterial with inner

resonators by cutting slots from a single-phase plate to form horizontal and vertical beams, which

connect the central block and its outer surrounding matrix [see the blue region in Fig. 5.2(a)]. The

central block functions as the inner mass, and the beams serve as the springs along the x1 and x2

directions. Two piezoelectric patches are bonded on the horizontal beams as stretch sensors, and the

sensing signal is fed into a transfer function H that sends to two piezoelectric patches bonded on

the vertical beams as actuators [Fig. 5.2(a)]. When the central block moves vertically, one sensing

piezoelectric patch is under tension (or compression), and the other is under compression (or tension)

[Fig. 5.2(b)]. The total sensing signal is then obtained from the two opposite charges Qs from the

sensing patches. The transfer function H(ω) processes the sensing voltage and sends output signals

Va to the two actuating patches, with Va = HQs/C0, where C0 is the reference capacitance. The

two actuating patches with opposite polarization bend the two vertical beams to produce horizontal

forces applied on the central block and the surrounding material, Fa ∝ Va [Fig. 5.2(c)]. However,

when the central block moves horizontally, all the vertical beams are bent and horizontal beams

remain straight, as horizontal beams are much stiffer in response to horizontal motions. As a result,

the two sensing patches do not sense the motion and the electronic loop will not produce any output

voltages. Therefore, the electromechanical control loop is entirely feed-forward: vertical motion

induces horizontal forces, while horizontal motion does not induce vertical forces.

The design is validated first by performing numerical simulations to calculate the effective

mass density tensor of the active metamaterial using COMSOL Multiphysics [Fig. 5.2(d)]. In the

simulations, we prescribe an acceleration, āi, on the boundaries of the unit cell and calculate the

total reactor forces, F̄i. The effective mass density tensor is attained based on Eq. (5.3); see also

Appendix F. In the design, H = 1, C0 = 2 nF, and the lengths of horizontal and vertical beams

facing the central block are different, leading to different resonance frequencies of the horizontal and

vertical modes. As shown in Fig. 5.2(d), the resonance behavior of M̂11 and M̂22 agrees well with

that predicted by Eq. (5.4). Further, M̂12 is nonzero and displays a double resonance behavior and

M̂21 indeed vanishes. Therefore, the effective mass density tensor is asymmetric. The detailed design

parameters are provided in Fig. 5.3(a). The design can be employed in further experimental and

numerical studies to exploit other profound properties of the odd mass density. Additionally, the
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Figure 5.2: Active unit cell design for odd mass density. (a) The metamaterial unit cell, which
exhibits odd mass, consists of a structured steel frame and four PZT patches (PZT-5A) with two of
them being stretch sensors and the other being actuators. The asymmetric actuation is achieved
by a programmable controller which connects the sensors and actuators and is characterized by a
transfer function H. (b, c) The schematic illustration of deformation distribution reveals how the two
orthogonal motions are coupled in an asymmetric way: The sensors sense the vertical deformation and
feed the sensing voltage processed by the controller to the actuators for horizontal actuation. While
the reverse is forbidden owing to the absence of a horizontal sensor. (d) Numerically obtained effective
mass density tensor M̂ij , normalized with M̂0 = M̂11(ω = 0.3ωr1). The frequency is normalized with
the first resonance frequency ωr1 = 2π × 10.81 kHz. The evaluated mass densities are normalized
with M̂0 = M̂11(ω/ωr1 = 0.3)

.

parametric study shown in Figs. 5.3(b) and 5.3(c) indicate that the magnitude and phase of the odd

mass M̂12 linearly scale with those of the transfer function H, suggesting the linearity of the odd

mass metamaterial.

Experiments

We fabricate a unit of the active metamaterial on a steel beam to test its wave transmission properties

[Fig. 5.4(a)]. We also leverage it as a way to show the existence of asymmetric/odd mass density

tensors. Details about the fabrication and circuit design as well as implementation are similar to those

used in the realization of nonlocal metabeam (see Chapter 4) and can be found in Appendix G. In the

study, we focus on two fundamental modes supported by the beam structures: longitudinal modes
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Figure 5.3: (a) Design of the unit cell for 1D nonreciprocal wave coupling. The dimensions are
L = a/2 = 10 mm, L1 = 9 mm, Lb1 = 10 mm, w1 = 0.5 mm, w2 = 7 mm, w3 = 0.75 mm, g1 = 1.5
mm, and g2 = g3 = 1 mm. The four piezoelectric patches (PZT-5A, 5 mm × 0.55 mm ×0.55 mm)
are highlighted in blue. (b) Dependence of the normalized magnitude |M̂12|/M̂0 on arg(H) and |H|,
where ρ0 denotes the static principal mass density. (c) Dependence of the phase arg(M̂12) on arg(H)
and |H|. The results are considered at 10 kHz.

dominated by the velocity component u̇ and transverse modes dominated by the velocity component

v̇. When the beam is symmetric about the neutral axis, the two modes are decoupled. Introducing

geometric asymmetry can make the two modes coupled, and the wave mode conversion has been

observed in various passive designs [146, 147]. However, wave mode interactions demonstrated so far

have always been reciprocal, namely, longitudinal modes can be converted into transverse modes

either partially or totally; transverse modes can also be converted back into longitudinal modes in a

similar manner.

The wave mode conversion embraced by the odd mass can no longer be reciprocal. To illustrate

this behavior, sensing patches are aligned along the x1 direction and actuating patches along the x2

direction; see Fig. 5.4(a). Since only transverse motions can be sensed in this case, which in turn

generates longitudinal forces thanks to the active bond, transverse waves induce longitudinal waves

when passing through the active metamaterial. The wave signals of v̇ and u̇ shown in Figs. 5.4(b) and

5.4(c) demonstrate this behavior, where transmitted waves from the active metamaterial have both v

and u components with the transverse incidence, and v remains the same regardless of the controller

being switched on or off. The experimental results yield satisfactory agreement with numerical

simulations, as can be seen from Fig. 5.5 where the transfer matrix method is used for analytically

predicting the transmission behaviors; also see Appendix H. The corresponding experimentally
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Figure 5.4: Experimental demonstration of 1D nonreciprocal wave coupling enabled by odd mass. (a)
Schematic of the experimental test bed that includes an active metamaterial with odd mass on a steel
host beam. Transverse (t) incidence generates both transverse (t) and longitudinal (l) transmission,
whereas the reverse is forbidden. The green arrows define the wave polarization u and v. The inset
displays a photo of the metamaterial functional unit. In the experiment, the incidence from the
left is excited by two symmetrically placed PZT-5A patches connected to an voltage amplifier and
arbitrary function generator (AFG). The measurement and post-processing are implemented by a
commercial laser vibrometer system (PSV-400). (b,c) Measured normalized transient velocities (b)
v̇ and (c) u̇ at the output under a transverse incidence when the active control is OFF (red solid)
and ON (blue dashed). (d,e) Numerical normalized transient velocities (d) v̇ and (e) u̇ at the output
under a longitudinal incidence when the active control is OFF (red solid) and ON (blue dashed).
The excitation in both cases is a 15-cycle tone burst centered at 11.3 kHz. All measured data are
normalized with the maximums of their own incidence (green).
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measured transient field distributions are displayed in Fig. 5.6 as well for a better demonstration.

On the other hand, no transverse wave components can be observed from a longitudinal incidence,

as shown in Figs. 5.4(d), 5.4(e) and 5.5. Similarly, if one rotates the active metamaterial by 90◦,

longitudinal waves induce transverse waves, but not the reverse. Further, the transmitted and

reflected signals measured from experiments can be employed to retrieve the effective mass tensors of

the active metamaterial, where we can assume the unit embedded in the beam as a point scatterer.

5.4 2D unconventional wave manipulation enabled by odd

mass density

Wave propagation in 2D elastic medium with odd mass density tensors

To further explore the nonstandard dynamics supported by odd mass density tensors, we study wave

propagation in a 2D active metamaterial. Note that, in the subsequent examples, we consider the

cases of M̂o
12 ∈ R. To facilitate the analysis, it is useful to rewrite the asymmetric mass density

tensor along principal directions of the symmetric mass density tensor. The transformed mass density

tensor reads (Appendix I)

M̃ij =

 M̃11 M̃12

−M̃12 M̃22

 , (5.9)

where M̃ij = M̂klβ̃kiβ̃lj , and β̃ki is the rotation matrix from xi to x̃i with x̃i being the principal axis

of M̂e
ij . At continuum limit, equilibrium equations can be written in x̃i as

(λ+ µ) ũj,ji + µũi,jj = −ω2M̃ij ũj , (5.10)

where ũi, λ, and µ denote the transformed displacement, first, and second Lamé’s constants,

respectively. We assume harmonic wave solutions ũα = Ũαe
i(q̃β x̃β−ωt) for Eq. (5.10), where q̃β = qr̃β .

q and r̃β are the wave number and direction cosine cos θ̃β where θ̃β is the angle between the principal

directional and xβ . Dispersion relations indicated by Eq. (5.10) then read

q2 = ω2

I1 ±
√

I21 − 4I2

(
M̃11M̃22 + M̃2

12

)
2I2

, (5.11)
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Figure 5.5: 1D nonreciprocal wave coupling. (a) Schematic of the transverse incidence. (b) An-
alytical and numerical comparison for both transmissions. (c) Transient analysis results for the
output displacements u and v for longitudinal and transverse modes, respectively. (d) Schematic
of the longitudinal incidence. (e) Analytical and numerical comparison for both transmissions. (f)
Transient analysis results for the output displacements u and v for longitudinal and transverse modes,
respectively.

Figure 5.6: Experimentally measured normalized velocity field distributions for 1D nonreciprocal
wave coupling. The output velocities u̇ and v̇ for longitudinal and transverse modes are displayed
without and with the active control.
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Figure 5.7: Energy phase transition at θ1 = 0 by tuning β̂. (a) Real and (b) imaginary parts of

wave numbers q in function of β̂. The EP is indicated, together with the energy-unbroken and
energy-broken phases. (c) Real and (d) imaginary parts of Ũ2/Ũ1 of eigenvectors in function of β̂.

where I1 = D22M̃11+D11M̃22, I2 = D11D22−D2
12, and D11 = (λ+ 2µ) r21+µr22, D22 = (λ+ 2µ) r22+

µr21, D12 = (λ+ µ) r1r2. r1 = arccos θ1 and r2 = arccos θ2 are the direction cosines with respect to x̃1

and x̃2 after the transformation. Clearly, given a real ω, there always exists two independent modes,

characterized by the two solutions of q2. Note that the odd mass density of the active metamaterial,

M̂12, is involved in three terms in Eq. (5.11), M̃11 and M̃22 as well as M̃12 to collectively control

wave propagation along different directions.

The most striking characteristics of Eq. (5.11) is the emergence of the term M̃2
12 related to q2, and

q2 need not be always greater than zero. For example, when I21 < 4I2

(
M̃11M̃22 + M̃2

12

)
, q becomes a

complex number, indicating energy gain or loss when waves travel along certain directions. The fact of

q evolution from originally a real number to a complex number underpins a phase transition governed

by the odd mass density. To see the phase transition in more details, we consider wave propagation

along one of the principal directions, in which the effective mass density is smallest. For simplicity, we

assume M̂11 = M̂22, and x̃i is obtained by rotating xi by π/4. Figures 5.7(a) and 5.7(b) show the real

and imaginary parts of the two q with different odd mass densities. Figures 5.7(c) and 5.7(d) show

the real and imaginary parts of the corresponding eigenvectors (polarization states of quasi-pressure
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Figure 5.8: Energy phase transition. (a) Iso-frequency contours ℜ(q̄1) and ℜ(q̄2) for both propagating

modes when the system operates in energy-unbroken phases (isotropic with β̂ = 0 and anisotropic

with β̂ = 0.4), at exceptional point (β̂ = 0.5865), and in energy-broken phase (β̂ = 0.7). q̄ is the wave
number normalized with the maximum in each case. Principal directions x̃1 and x̃2 are illustrated
by rotating x1 and x2 by θ̃1. Here, θ̃1 = π/4. (b) θ dependence of the imaginary components of
wave numbers, ℑ(q̄1) and ℑ(q̄2), for both modes correspondingly in the four representative phases
mentioned in (a). In both (a) and (b), we select λ = 37.4 GPa, µ = 27 GPa, and M̂11 = M̂22 = 16277
kg/m3. Here, the blue and red modes correspond to those given in Fig. 5.7. (c) The energy

phase diagram in the space of θ in black (azimuthal) and β̂ in red (radial). The yellow region is
the energy-unbroken phase and supports free wave propagation. While the dark blue regions are
energy-broken phase where wave amplification occurs.

and quasi-shear modes). In the figures, we define β̂ = M̂12/M̂11. For zero or small β̂ leading to

I21 > 4I2

(
M̃11M̃22 + M̃2

12

)
, there exists two different real q, and the corresponding eigenvectors

are both real. M̂12 only induces anisotropy, which, however, is different from passive anisotropic

mass densities, where eigenvectors of different modes are orthogonal. For the active metamaterials

presented here, the presence of M̃12 makes eigenvectors of different modes no longer orthogonal.

Since the system in this phase region is energy conserved, we say this phase is an energy-unbroken

phase. Further, by increasing β̂ such that I21 = 4I2

(
M̃11M̃22 + M̃2

12

)
, the two q and their associated

eigenvectors coalesce, forming an EP. Further increasing β̂ to make I21 < 4I2

(
M̃11M̃22 + M̃2

12

)
, the

two q appear in a complex conjugate pair, and wave propagation accompanied with energy gain (blue

mode) and loss (red mode) can be anticipated in this phase region. Thus, we say this phase is an

energy-broken phase. In addition to the complex q, the eigenvectors are also complex, coinciding

with the work done condition designated by Eq. (5.8).

Next, we examine the phase transition along different directions. Figure 5.8(a) shows the iso-

frequency curves for the real part of the wave numbers, ℜ(q), with different odd mass densities.

Figure 5.8(b) shows the imaginary part of the wave numbers, ℑ(q), along different directions θ. Note

that θ represents the direction angle with respect to x1 before transformation. In the figures, we

select β̂ = 0, 0.4, 0.5865 and 0.7. When β̂ = 0, the active metamaterial is reduced to a passive one
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Figure 5.9: Demonstration of energy phase transition and directional wave amplification. (a)

Numerically evaluated divergence fields of displacement at 16 kHz for various β̂ under a pressure
loading. (b) Numerically evaluated curl fields of displacement at 16 kHz for various β̂ under a shear

loading. In both figures, β̂ = 0 (energy-unbroken isotropic), β̂ = ±0.29 (energy-unbroken anisotropic),

and β̂ = ±1.18 (energy-broken) are achieved with the transfer functions H = 0, H = ±0.2, and
H = ±1, respectively. The 2D odd mass region, composed of 12× 12 unit cell and possessing odd
mass density, is embedded in a normal isotropic background (ρ = 16277 kg/m3, µ = 27.4 GPa, λ = 37
GPa) surrounded with perfect matched layers (PMLs). The point sources for the pressure and shear
excitation are realized by setting normal and tangential boundary loads, respectively. The fields
obtained from simulations are all normalized with their own maximums. The principal direction x1

is indicated.

with isotropic mass densities, where waves travel equally to different directions. In Fig. 5.8(a), blue

dashed and red solid curves represent pressure and shear wave modes, respectively. When β̂ = 0.4,

no gain and loss can be found along any directions, the active metamaterial is in the energy-unbroken

phase. Due to anisotropy, waves propagate at different phase velocities along different directions.

In particular, along the principal directions of π/4, quasi-pressure waves travel at the higher phase

velocities, while quasi-shear waves travel at the lower phase velocities. Similar conclusions can be

attained along the directions of 3π/4, where the principal mass density along this principal direction

is largest. When β̂ = 0.5865, two exceptional points are formed along the principal direction with

the smallest principal mass density, namely the directions of π/4 and 5π/4. Further increasing β̂ to

0.7, the active metamaterial enters the energy-broken phase around these directions. As expected,

ℑ(q) becomes nonzero, and waves are attenuated and amplified along those directions. In addition,

four exceptional points are formed at the boundaries of those directions. Note also that, for all the

cases, the wave behavior obeys mirror symmetry with respect to the principal axes of the even mass

density tensor. This is the direct consequence of the q2 term in Eq. (5.11). The conclusion that

the exceptional points (wave attenuation and amplification) are first observed along the principal
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Figure 5.10: (a) Design of the unit cell for the investigation of the energy phase transition and 2D
wave manipulation. (b) Numerically determined entries of the effective mass density tensor M̂ij .

direction with the smallest principal mass density still holds when M̂11 ≠ M̂22. The launch pattern

of the exceptional points in the active solid provides a tool to tailor the wave amplification direction

using M̂11 and M̂22 through designing passive metamaterial structures and a numerical demonstration

will be given in the following.

To further examine the energy phase transition and directional wave amplification, harmonic

wave propagation in a 2D active medium is conducted by applying cylindrical wave excitation via a

point source in COMSOL Multiphysics, as shown in Fig. 5.9. For simplicity, the active unit is given

in Fig. 5.10(a) and preserves C4 structure symmetry to ensure M̂11 = M̂22. The effective odd mass

density tensor shown in in Fig. 5.10(b) is determined using Eq. (5.3). To determine the effective

stiffness tensor C, the retrieval process requires specific boundary conditions [148–150]; see Appendix

F. Here, the transfer function is selected as H = 1, and only one resonance is visible across the

frequency range, simply due to that the C4 symmetry of the unit cell yields M̂11 = M̂22. Also, M̂12 is

nonzero everywhere and reaches maximum at the resonance, whereas M̂21 remains nearly vanishing

across the considered range, achieving the odd mass density. Meanwhile, the metamaterial admits an

orthotropic stiffness tensor and is governed by the Hooke’s law stating σij = Cijklϵkl where ϵkl is the

displacement gradient. The stiffness constants are found numerically to be C1111 = C2222 = 88.13

GPa, C1122 = C2211 = 27.61 GPa, C1212 = C2121 = 26.67 GPa, and C1221 = C2112 = 26.32 GPa in

Voigt notation at 16 kHz using the mentioned homogenization method [148, 149]. Interestingly, the

odd mass causes some minor stress asymmetry, possibly due to the existence of the asymmetric control

[147, 151]. The couplings between the normal and shear components are five-order smaller and hence

are ignored. To suppress reflected waves from the finite boundaries, the active solid is embedded

in a homogenized medium with almost the same effective stiffness tensor attached to the perfectly
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Figure 5.11: Comparison between actual structures and homogenized media. (a) Numerically

evaluated divergence fields of displacement at 16 kHz for various β̂ under a pressure loading. (b)

Numerically evaluated curl fields of displacement at 16 kHz for various β̂ under a shear loading. In
both (a) and (b), the top panels show the field distributions of the homogenized media, whereas the
bottom panels illustrate the corresponding actual structures. The field distributions are normalized
with their own maximums.
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Figure 5.12: Comparison between actual structures and homogenized media for H = i (β̂ = 1.18i).

(a, b) Numerically evaluated (a) divergence and (b) curl fields of displacement at 16 kHz for β̂ = 1.18i
under a pressure and shear loading, respectively. The field distributions are normalized with their
own maximums.

matched layers (PMLs). From Figs. 5.9(a) and 5.9(b) showing both the divergence and curl of the

displacement fields, it can be concluded that the active solid can operate from the energy-unbroken

phase to the energy broken phase through the exceptional points by increasing or decreasing β̂ from

β̂ = 0 (energy conservation). The wave propagation behavior becomes more anisotropic with the

increase or decrease of the β̂ in the energy-unbroken phase. It also indicates strong directional

wave amplification when β̂ = 1.18 at which the system operates in the energy-unbroken phase.

The directions of the wave amplification indeed coincide with the principal directions of the mass

density tensors, which are θ1 = π
4 /

3π
4 and 5π

4 / 7π
4 for β̂ = 1.18/− 1.18. Note that minor unexpected

scattering at the corners is found in the curl fields for the energy-unbroken phase; see Fig. 5.9(b).

This is due to the unit cell size being comparable to the operating wavelength, thereby weakening the

long-wavelength assumption to some extent. To validate the simulation and related wave phenomena,

comparison of the wave field distributions obtained from both effective medium and real structures

at all β̂ is conducted and shown in Fig. 5.11, and very good agreement is observed.

It is also interesting to point out that the wave amplification along the principal directions still

holds when the transfer function is an purely imaginary number, say H = i, equivalent to β̂ = 1.18i;

see Fig. 5.12. In comparison with the cases of real β̂, here the wave amplification direction for one

of the two modes shifts to the other principal direction by π/2. It should also be mentioned that

the active solid with purely imaginary β̂ always operates in the energy-broken phase without energy

phase transition behavior.

Anisotropic mass densities, namely M̂11 ̸= M̂22, provides another degree of freedom in tuning

directions of the wave amplification in the active solid. Due to the anisotropy, the principal directions

of the mass density differ from those of the isotropic mass density with different phase velocities.
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Figure 5.13: Wave manipulation with anisotropic odd mass density tensor. (a, b) Normalized
divergence fields of displacement at (a) M̂22/M̂11 = 0.1 and (b) M̂22/M̂11 = 2. (c, d) Normalized

curl fields of displacement at (c) M̂22/M̂11 = 0.1 and (d) M̂22/M̂11 = 2. β̂ = 0.6144 is assumed
(energy-broken phase). The background media are the same as the previous. The stiffness property
of the odd mass regions (500 mm ×500 mm) are consistent with that of the background in order
to improve impedance matching. In both field plots, M̂11 is selected as 16277 kg/m3. The field
intensities are normalized with their own maximums at 16 kHz. On the bottom of each field plot,
the theoretical principal direction θ̃1, defining x1 and predicting maximum amplification steering
angle, is indicated in red.
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In this way, the wave amplification directions can be adjusted accordingly. To illustrate this wave

phenomena, the normalized divergence and curl fields of wave displacement are plotted in Figs. 5.13

for the effective active media with M̂22/M̂11 = 0.1 and 2, and β̂ fixed at 0.6144. The angle change of

directional wave amplification for both pressure and shear waves confirms the functionality of the

mass density anisotropy. The predicted angles of directional wave amplification are indeed mainly

along the principal directions of the mass density from the analytical analysis (Appendix I. Some

discrepancies are observed, which may attribute to the material impedance mismatch between the

real active solid and its surrounding background.

In addition, the θ̃1 tunability of directional wave amplification due to the mass density anisotropy

is systematically investigated when M̂22/M̂11 takes values between 0.1 and 2. A pressure point source

is used for generating cylindrical waves. Similar to the above in Fig. 5.13, the stiffness constants

of the odd-mass-density region here are identical to those of the background for good impedance

matching. Examining the steering angles for pressure waves in Figs. 5.14(a)-5.14(f) reveals that

the numerical results agree well with the theoretical prediction. Similarly, Examining the steering

angles for shear waves in Figs. 5.14(g)-5.14(l) also reveals satisfactory agreement with the theoretical

prediction. The undesired scatterings originate from the impedance mismatch at the interfaces, which

can be hardly removed. Nevertheless, the steered pressure and shear beams enabled by the wave

amplification of odd mass exhibit dominant intensities over the unwanted scatterings, proving the

validity of the functionality of the mass density anisotropy.

5.5 Pseudo-Hermiticity and non-Hermitian skin effect

Pseudo-Hermiticity

As the active solid with odd mass density is a non-Hermitian system, it is also interesting to find

how the non-Hermiticity would influence the nature of bulk modes. To start with, we emphasize that

the system possesses a generalized PT symmetry stating [K, M̂−1
ij D] = 0, where K is an antiunitary

complex conjugation operator [135], by clarifying that the system with odd mass density is pseudo-

Hermitian. Based upon Ref. [152], a 2 × 2 matrix Q with pseudo-Hermiticity can be written as

Q = ϵσ0 + (γn1 + iρ sinαn2 + iρ cosαn3) · σ, (5.12)

89



.

Figure 5.14: Pressure and shear wave beam steering with mass density anisotropy in the presence of
odd mass density. Normalized (a-f) divergence and (g-l) curl fields of displacement when M̂22/M̂11

takes 0.1, 0.25, 0.5, 1, 1.5 and 2. The background media are the same as the previous. While the
stiffness properties of the odd mass regions are consistent with that of the background for better
impedance matching. In all field plots, M̂11 and β̂ are fixed at 16277 kg/m3 and 0.6144, respectively.
All the field intensities are normalized with their respective maximums at 16 kHz. On the bottom of
each field plot, the theoretical principal direction angle θ1 for the maximum amplification rate is
indicated in red.
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where σ0 is a 2× 2 identity matrix, and σ = (σx,σy,σz)
T are Pauli matrices, with

n1 = (sinΘ cosΦ, sinΘ sinΦ, cosΘ), (5.13)

n2 = (cosΘ cosΦ, cosΘ sinΦ,− sinΘ) (5.14)

n3 = (− sinΦ, cosΦ, 0). (5.15)

The pseudo-Hermitian matrix Q admits 6 real variables and is said to be n1 · σ-pseudo-Hermitian.

Its eigenvalues read

λ1,2 = ϵ±
√
γ2 − ρ2. (5.16)

The spectrum of Q is real when γ2 − ρ2 > 0. Then, it is always accompanied with a positive definite

operator η reading

η = p[γσ0 + (on1 + ρ cosαn2 − ρ sinαn3) · σ], (5.17)

and resulting in

ηQη−1 = Q†. (5.18)

Above, p and o are arbitrary real constants satisfying the conditions pγ > 0 and o2 < γ2 − ρ2. In

this case, we have

Du = −ω2M̂u. (5.19)

The above is written as(λ+ 2µ)c2 + µs2 (λ+ µ)cs

(λ+ µ)cs (λ+ 2µ)s2 + µc2

u =
ω2

q2

M̂11 M̂12

0 M̂22

u. (5.20)

in which c ≡ cos θ and s ≡ sin θ. Without loss of generality, we select M̂11 = M̂22 = M̂c and

M̂12 = β̂M̂c. By rearranging Eq. (5.20), we arrive at

A−Bβ B − Cβ

B C

u =
M̂cω

2

q2
u, (5.21)
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where

A = (λ+ 2µ)c2 + µs2, (5.22)

B = (λ+ µ)cs, (5.23)

C = (λ+ 2µ)s2 + µc2. (5.24)

Comparing Eq. (5.21) with Eq. (5.12), one can easily find the proposed system can be expressed by

Eq. (5.12) with the substitutions

ϵ =
1

2
(A+ C − β̂B), (5.25)

γ = −1

2
β̂C, (5.26)

ρ cosΘ =
1

2
(A− C − β̂B), (5.27)

ρ sinΘ =
1

2
(2B − β̂C), (5.28)

Φ = α = 0. (5.29)

Therefore, the odd-mass system admits ηθ-pseudo-Hermiticity, where ηθ = n1(Θ) · σ. The condition

γ2 − ρ2 > 0 for real spectrum of ω2 can be recast as

β̂2B2 − 2B2(A+ C)β̂ + 4B2 + (A− C)2 > 0. (5.30)

Therefore, the PT -unbroken regions, shown in Fig. 5.7, are determined by

β̂ >
2(A+ C)

B
+

2

B2

√
B2AC −B4, (5.31)

β̂ <
2(A+ C)

B
− 2

B2

√
B2AC −B4. (5.32)

By calculation, one can find that the PT -unbroken and PT -broken phase regions coincide with the

energy-unbroken and energy-broken regions, respectively.

Non-Hermitian skin effect induced by odd mass density

we impose open boundary condition (OBC) and periodic boundary condition (PBC) along x2 direction

in the finite active solid and assume q1 = 1 rad/m in reciprocal space along the x1 direction. The

spectra for β̂ = 0.2 and β̂ = 0.9 are plotted in Figs. 5.15(a) and 5.15(b), respectively. We find the
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.

Figure 5.15: Non-Hermitian skin effect induced by odd density. (a, b) The complex spectrum when

the system operates at β̂ = 0.2 and 0.9. The squares with the hue indicating the wave number q2 and
gray circular scatters are results from PBC and OBC, respectively. (c) Numerically computed OBC

eigenmodes at β̂ = 0.2 for a finite ribbon. The corresponding eigenfrequencies are 12.94, 15.48 and
30.30 kHz from left to right. (d) Numerically computed eigenmodes at β̂ = 0.9. The corresponding
eigenfrequencies are 27.71 + 0.324i, 27.71− 0.324i and 28.14 kHz from left to right. The top and
bottom are set with open boundary conditions. Without loss of generality, the horizontal wave
number is fixed at q1 = 1 rad/m.
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OBC and PBC spectra coincide in the energy-unbroken region with β̂ = 0.2, but are drastically

distinct from the each other in the energy-broken region with β̂ = 0.9. To retrace this spectral

discrepancy, the vertical wave number q2 should be extended to the generalized Brillouin zone

(GBZ), which is a loop on the complex plane; see the next subsection for the details about the

derivation of the GBZ. Figs. 5.15(c) and 5.15(d) illustrate the eigenmodes under the OBC for β̂ = 0.2

and β̂ = 0.9, respectively. The active solids can only host bulk modes when the system is in the

energy-unbroken phase [153, 154]. However, we notice that some eigenmodes localize on the open

edges when the system is in energy-broken phase, which correspond to an elastic manifestation of

the non-Hermitian skin effect [135, 152, 155]. The complex frequency means that the skin modes

are amplified (attenuated) for positive (negative) ℑ(frequency). This skin mode is different from the

Rayleigh wave mode whose amplitude is invariant since the frequency is real in classic elasticity. In

addition, the skin modes always appear in pairs with one localized on the top while the other on the

bottom since the eigenfrequencies always exhibit complex conjugate in the energy-broken phase.

Reconstruction of correspondence between open boundary condition and

periodic boundary condition spectra on generalized Brillouin zone

For the Hermitian system, the OBC spectrum for infinite system size L → ∞ is continuous and

it is the same as the PBC spectrum for the wave number with the periodicity over the Brillouin

zone. However, in Fig. 5.15(b), we find discrepancies between the OBC and PBC spectra in the

energy-broken phase region. Here we reconstruct the correspondence between the OBC and PBC

spectra by extending to a generalization Brillouin zone (GBZ). First, we will derive the OBC spectrum

equation of odd-mass-density system analytically. Then under the condition L → ∞, we reduce the

OBC spectrum equation to a simpler one that gives the GBZ. Substituting the wave number on the

generalized Brillouin zone into the dispersion relation, we can obtain the PBC spectrum on the GBZ,

which would be identical to the OBC spectrum with L → ∞.

For a solid with odd mass density, the equations of motion are

σ11,1 + σ12,2 = M̂11ü+ M̂12v̈

σ12,1 + σ22,2 = M̂22v̈.
. (5.33)
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Constitutive relation for plane strain problem is


σ11

σ22

σ12

 =


λ+ 2µ λ 0

λ λ+ 2µ 0

0 0 µ




ε11

ε22

ε12

 (5.34)

Substituting Eq. (5.34) into Eq. (5.33), the equations of motion expressed by displacements are

 (λ+ 2µ)∂2
1 + µ∂2

2 (λ+ µ)∂1∂2

(λ+ µ)∂1∂2 (λ+ 2µ)∂2
2 + µ∂2

1


 u

v

 =

 M̂11 M̂12

0 M̂22


 ü

v̈

 (5.35)

With the substitution of the standing wave solution u = uei(q1x1+q2x2−ωt), v = vei(q1x1+q2x2−ωt) into

Eq. (5.35), we have

 (λ+ 2µ)q21 + µq22 (λ+ µ)q1q2

(λ+ µ)q1q2 (λ+ 2µ)q22 + µq21


 u

v

 = ω2

 M̂11 M̂12

0 M̂22


 u

v

 (5.36)

The vanishing of determinant gives the polynomial equation

c1q
4
2 + c2q

3
2 + c3q

2
2 + c4q2 + c5 = 0 (5.37)

where the coefficients can be obtained from the expansion of determinant. Equation (5.37) gives four

roots q12 , q
2
2 , q

3
2 , q

4
2 with the arrangement of ℑ(q12) ≤ ℑ(q22) ≤ ℑ(q32) ≤ ℑ(q42). Accordingly, the four

corresponding eigenvectors are

ui = −(λ+ µ)qqq2 + ω2M̂12

vi = (λ+ 2µ)q21 + µq22 − ω2M̂11, i = 1, 2, 3, 4.

(5.38)

The superposition of the eigenstates gives the general solution

 u

v

 =

4∑
i=1

Cie
iqi2x2

 ui

vi

 (5.39)

Here, we consider the system to be infinite along the x1 direction. While along the x2 direction, we
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impose OBCs (stress free boundary conditions) which are

 σ22|x2=0 = 0

σ11|x2=0 = 0,

 σ21|x2=L = 0

σ12|x2=L = 0.
(5.40)

With the substitution of the constitutive relation, they become

[λu,1 + (λ+ 2µ)v,2] |x2=0 = 0

(u,2 + v,1) |x2=0 = 0

(5.41)

and

[λu,1 + (λ+ 2µ)v,2] |x2=L = 0

(u,2 + v,1) |x2=L = 0

(5.42)

Substituting the general solution Eq. (5.39) into boundary conditions Eqs. (5.41) and (5.42), we

have 

A1(0) A2(0) A3(0) A4(0)

B1(0) B2(0) B3(0) B4(0)

eiq
1
2LA1(L) eiq

2
2LA2(L) eiq

3
2LA3(L) eiq

4
2LA4(L)

eiq
1
2LB1(L) eiq

2
2LB2(L) eiq

3
2LB3(L) eiq

4
2LB4(L)





C1

C2

C3

C4


= 0 (5.43)

where Ai = λq1ui(x2) + (λ+ 2µ)qi2vi(x2), Bi = qi2ui(x2) + q1vi(x2). The vanishing of determinant

gives the frequency spectrum for OBC

∣∣∣∣∣∣∣∣∣∣∣∣∣

A1(0) A2(0) A3(0) A4(0)

B1(0) B2(0) B3(0) B4(0)

eiq
1
2LA1(L) eiq

2
2LA2(L) eiq

3
2LA3(L) eiq

4
2LA4(L)

eiq
1
2LB1(L) eiq

2
2LB2(L) eiq

3
2LB3(L) eiq

4
2LB4(L)

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0; (5.44)

also see the red dots in Fig. 5.16(a).

Then we turn to derive the GBZ by using the method for the lattice system [156]. The solution

of Eq. (5.44) can be simplified for large L, which forms the corresponding continuum spectrum. Let
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us rewrite Eq. (5.44) with a more general form for the determinant of a 2M dimensional matrix

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f1
(
q12 , ω,S

)
· · · f1

(
q2M2 , ω,S

)
...

...
...

fM
(
q12 , ω,S

)
· · · fM

(
q2M2 , ω,S

)
g1
(
q12 , ω,S

)
eiq

1
2L · · · g1

(
q2M2 , ω,S

)
eiq

2M
2 L

...
...

...

gM
(
q12 , ω,S

)
eiq

1
2L · · · gM

(
q2M2 , ω,S

)
eiq

2M
2 L

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0. (5.45)

where M = 2 for the current problem, and S is the set of the system parameters λ, µ, M̂ij , L, and q1.

By expanding the determinant given in Eq. (5.45), we have

∑
P,Q

F
(
qi∈P
2 , qj∈Q

2 , ω,S
)∏

l∈P

eiq
l
2L = 0 (5.46)

The sets P and Q are two disjoint subsets of the set {1, · · · , 2M} such that the number of elements

of each subset is M . In this way, the sum included in Eq. (5.44) is taken over all the sets P and Q.

We now consider asymptotic behavior of the solutions of Eq. (5.46) for large L. When not all

of ℑ(q1y), · · · ,ℑ(q2My ) are 0, the only possible solution is ℑ(qM2 ) = ℑ(qM+1
2 ). If ℑ(qM2 ) ̸= ℑ(qM+1

2 ),

there is only one leading term proportional to eiq
M+1
2 L · · · eiq2M2 L in Eq. (5.46) in the limit of a large

L. Thus it leads to

F
(
qi∈P ′

2 , qj∈Q′

2 , ω,S
)
= 0 (5.47)

with P ′ = {M + 1, · · · , 2M} and Q′ = {1, · · · ,M}. This equation neither depends on L, nor allows

continuum spectrum. On the other hand, when ℑ(qM2 ) = ℑ(qM+1
2 ), there are two leading terms

proportional to eiq
M
2 L · · · eiq2M2 L and to eiq

M+1
2 L · · · eiq2M2 L, and Eq. (5.46) can be rewritten as

eiq
M
2 L

eiq
M+1
2 L

= −
F
(
qi∈P0
2 , qj∈Q0

2 , ω,S
)

F
(
qi∈P1
2 , qj∈Q1

2 , ω,S
) (5.48)

with P0 = {M + 1, · · · , 2M}, Q0 = {1, · · · ,M}, P1 = {M,M + 2, · · · , 2M}, and Q1 = {1, · · · ,M −

1,M + 1}. In such a case, we can expect that the difference between ℜ(qM2 ) and ℜ(qM+1
2 ) can be

changed almost continuously for a large L, producing continuum bands.

In the current case, ℑ(q12) = · · · = ℑ(q2M2 ) = 0 just corresponds to a Hermitian situation, and

there is no leading term in Eq. (5.46). Therefore, we have to solve Eq. (18), completely. However, for

Hermitian situations, ℜ(q12), · · · ,ℜ(q2M2 ) can change continuously for a large L, and the frequency
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Figure 5.16: Frequency spectrum and GBZ. (a) The frequency spectrum for PBC, OBC are from Fig.
5.15(b). The PBC spectrum from GBZ is calculated based on Eqs. (5.49) and (5.37). (b) Generalized
Brillouin zone is calculated based on Eqs. (5.49) and (5.37).

spectrum is actually the dispersion curve. Therefore, the frequency spectrum obtained in this case is

included in

ℑ(qM2 ) = ℑ(qM+1
2 ), (5.49)

with the dispersion relation Eq. (5.37). Then, we can get the continuous frequency spectrum for

both Hermitian and non-Hermitian cases.

By solving Eq. (5.49) with Eq. (5.37), we can get the GBZ which are curves in the complex

plane; also see 5.16(b). The GBZ tells us which end the mode is localized at in this study. With

the substitution of the complex wave numbers of the GBZ into the dispersion curve given by Eq.

(5.37), we can get the PBC spectrum from GBZ; see blue solid line in 5.16(a). We find that the

OBC spectrum is same as the PBC spectrum from the GBZ. This suggests the reconstruction of the

correspondence between OBC and PBC spectra based upon the GBZ. Actually, solving Eqs. (5.49)

and (5.37) not only gives the GBZ but also gives the frequency spectrum. Therefore, we need not

substitute the complex wave numbers of the GBZ to the dispersion curve.

5.6 Summary

In conclusion, the active metamaterial presented here demonstrates odd mass density that are enabled

by sensing, actuating and local computation. The minimal on-board electronics that power the interior

local resonators enable its non-Hermitian wave functions including the directional wave amplification

and the non-Hermitian skin effect. Odd mass density extends the range of possible couplings between
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conventional forces and deformation along two perpendicular directions by including antisymmetry

in their relationship. This design can be flexibly tuned through computer coding and scaled via

microelectromechancial systems (MEMS). The mechanical approach relies on a feed-forward control

loop, a generic concept that can exist in both metamaterial and biological contexts. Combining

the principles illustrated here with odd moduli, nonlinearities, and strong dissipation suggests new

approaches for the control of wave propagation in active solids and fluids.
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Chapter 6

INDEPENDENT FLEXURAL WAVE FREQUENCY

CONVERSION BY A LINEAR ACTIVE META-LAYER

6.1 Introduction

Wave frequency is one of the fundamental parameters governing wave propagation and its interaction

with matters. Most physical laws on wave propagation and wave–matter interaction are frequency-

dependent. Altering frequency can break the limits currently imposed by laws of physics for a given

frequency condition, such as imaging resolution limits, wave energy transport, and wave propagation

behavior. Manipulating flexural waves in platelike structures has been of considerable interest with

widespread applications in nondestructive structural health monitoring, vibration suppression and

control [20, 43, 157–162]. In linear time-invariant plate-type media, energy exchange among waves at

different frequencies is prohibited since those waves are decoupled. On the other hand, flexural waves

at different frequencies can exchange energy among themselves due to the coupling and mixing of

different frequency components during the propagation in nonlinear or time-modulated plate media,

where linearity or time invariance is broken [109, 113, 120, 136, 163, 164]. However, nonlinear and

time-modulated wave conversion is in general amplitude-dependent and also takes place in a way that

is impossible to be manipulated individually and independently, limiting its wave control applications

[120, 136, 164, 165]. A linear mechanism-based wave conversion, which is independent of incident

amplitude and provides generation of freely controlled harmonics, could offer far more freedom in

wave manipulation and therefore is the major motivation of this study.

Rapid advances in control of the phase and amplitude of wave scattering from planar or linear

arrays of scatterers have stimulated the development of optic, acoustic and elastic metasurfaces with

subwavelength building blocks that use amplitude or phase-sensitive scattering to enable wavefront
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control. To date, metasurfaces have mostly been designed for wave beam steering [166–170] and

focusing [170–172], self-bending beam generation [170, 173], control of dynamic pulse [174, 175],

as well as wave mode and polarization conversion [176–178]. To enhance their functionality and

dynamic performance in scenarios where tunability and adaptivity are required, active metasurfaces

have been recently suggested by incorporating an active medium into passive metasurface structure.

For example, the active mechanical meta-layers have been developed by introducing piezoelectric

sensors and actuators into host structures [49, 50]. Thus far, the active metasurfaces reported are

mainly linear and time-invariant for dynamic control, and the interference wave phenomena are only

observed at single frequency. To exploit the frequency mixing, optical time-varying metasurfaces

have been proposed [179, 180]. In those designs, the refractive index is temporally modulated using

a pump or carrier wave, efficiently enabling enriched wave functions compared with time-invariant

designs, i.e. simultaneous control of spatial and temporal spectra of light [181, 182], and modulated

frequency conversion [183]. However, to the best of my knowledge, there exists no strategies or

designs of linear metasurfaces that could achieve independent and controllable frequency conversion

in optics, acoustics, and mechanics.

In this Chapter, a linear active meta-layer in a structural beam for independent frequency

conversion of flexural waves is reported, which is underpinned by a unique physical principal related

to circuit time modulation of sensing signals. The active meta-layer is driven by a time-dependent

transfer function through bonded piezoelectric actuators and sensors to perform independent parallel

operations over waves at different frequencies. The design breaks energy conservation by pumping in

electrical energy to cancel incidence and freely emit arbitrary transmitted waves as demanded (Fig.

6.1). Thus far, no existing experimental designs can break the fundamental limitation imposed by

the physics laws of wave diffraction such as Snell’s law and Rayleigh criterion to realize such linear

and independent mode conversion of flexural waves in a very thin dimension. Additionally, phase-

and frequency-gradient meta-layers for frequency-converted wave steering and dynamic beam steering

are demonstrated, respectively. The physical realization of the meta-layer is the key to accomplish

these novel wave functions.

6.2 Programmable time-modulated metabeam

The linear active meta-layer is constructed by bonding a large piezoelectric patch on one surface

and two small piezoelectric patches on another surface of a host beam (see Fig. 6.1). The large

piezoelectric patch serves as the sensor to sense the bending curvature at its position. The two small
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piezoelectric patches are actuators that can generate bending moments to the beam. The sensor and

actuators are connected by an electrical control loop. In the design, a charge amplifier is connected

to the sensing patch, leading to the sensing voltage Vs(t). Antisymmetric voltages are applied on

the two patches (one is Va(t), the other is −Va(t)), which collectively produce an effective shear

load on the beam. As a result, the sensor cannot detect the actuation, making the control loop

feedforward. A digital microcontroller is implemented into the electrical control loop to send out the

signal Va(t) based on the input Vs(t). Remarkably, the feed-forward control loop enables multiple

independent parallel operations in the microcontroller, as each of the operations has no effect on

the sensing signal, preventing interactions with other operations. To realize frequency conversion,

the microcontroller is driven by two independent operations to generate the superimposed actuation

signal as Va(t) = V
(0)
a (t) + V̄a(t), where V

(0)
a (t) is used to cancel the incident wave in the transmitted

field and V̄a(t) =
∑N

n=1 V
(n)
a (t) is mainly for the wave conversion with multiple desired frequencies

in the transmitted field.

6.3 Theoretical analysis

To find the relationship between V
(0)
a (t) and Vs(t), we first calculate the wave field generated by

V
(0)
a (t) using the Green’s function as

w̃a(x) = sgn(x)(e−ik1|x| + e−k2|x|)κaṼa (6.1)

where w̃a(x) and Ṽa denote the harmonic wave profile and the amplitudes of the actuation voltage,

and κa, k1, and k2 are real constants representing the actuation coefficient, wave number, and

attenuation constant, respectively. They read

k1 = −i

√
−α−

√
α2 − 4D0β

2D0
, (6.2)

k2 =

√
−α+

√
α2 − 4D0β

2D0
, (6.3)

α =
ρ0ω

2D0

G0
+ J0ω

2, (6.4)

β =
(J0ω

2 −G0)ρ0ω
2

G0
. (6.5)

In the derivation, we assume the active meta-layer is located at x = 0, and the dimension of the

meta-layer is much shorter than the wavelength such that the actuation of the meta-layer can be
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Figure 6.1: Schematic illustration of the programmable time-modulated metabeam for continuous
dynamic control of flexural wave propagation. The meta cell converts the incident wave Ψ0(A0, ω0, ϕ0)
into an arbitrary combination of transmitted wave components ΣnΨn(An, ωn, ϕn), via a programmable
feed-forward control system that exhibits time modulation and realizes antisymmetric actuation. The
terms An, ωn and ϕn denote the field magnitude, frequency and phase of the nth-order harmonic,
respectively. The bottom layer shows the photos of the mechanical (actuators and sensor) and
the microelectronic control circuit. The piezoelectric patches (PZT-5J, lsen = dsen = dact=10 mm,
lact = 4 mm, x0 = 3 mm.) are mounted to a 3-mm-thick steel beam of db = 11 mm via conductive
epoxy. The thicknesses of the sensor and actuators are 0.5 mm and 1 mm, respectively. The slit
used to diminish the interactions between adjacent meta cells has a length of lslit = 12 mm. The
microelectronic controller is responsible for generating the time-dependent transfer function. Vs(t)
and Va(t) are the respective electrical voltages from the charge amplifier and voltage amplifier. They
follow the relationship H(t) = Va(t)/Vs(t). Reprinted figure with permission from Q. Wu, X. D.
Zhang, P. Shivashankar, Y. Y. Chen, and G. L. Huang, Physical Review Letters, 128, 244301 (2022).
Copyright (2022) by the American Physical Society.
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treated as a point shear load. Considering an incident flexural wave w̃i(x) = W̃ie
−ik1x with a complex

amplitude W̃i, the sensing signal can be obtained as Ṽs = W̃i/κs, where κs is a real constant denoting

the sensing coefficient. To achieve wave cancellation in the transmitted field, the traveling wave

component of w̃a(x) should be out of phase with w̃i(x) for x > 0, leading to

Ṽa

Ṽs

= −κs

κa
(6.6)

As a result, V
(0)
a (t) is always proportional to Vs(t). This simple relationship, however, produces

complexity to the design of the electrical control system in experiments, as the control system usually

requires filters for system stability, which, otherwise, induce the phase change between V
(0)
a (t) and

Vs(t). In experiment, we employ an analog differentiator circuit together with a second-order filter

in the microcontroller to approximate this linear relationship (see Supplementary Information for

detailed circuit designs). In particular, the relationship between the output and input signals of

the second-order filter in the microcontroller reads V̈out

ω0
2 + V̇out

2µω0
+ Vout = A0Vin, where µ = 0.6,

A0 = κs

2µωκa
, and the cutoff frequency ω0 is selected as the operation frequency.

Next, to construct V
(n)
a (t) using Vs(t) for active emission of waves at a different frequency, we

consider harmonic incidence with a real time-domain sensing signal Vs(t) =
W̃i

κs
cos(ωt+ ϕ0). With

this assumption, V
(n)
a (t) can be attained by mixing Vs(t) with a carrier wave as

V (n)
a (t) = An[Vs(t)cos(δωnt+ ϕn)− Vs(t−

3π

2ω
)sin(δωnt+ ϕn)] (6.7)

where An controls the amplitude of the emitted wave, δωn is the change in frequency, and ϕn

modulates the phase of the emitted wave. Note that the presence of Vs(t− 3π
2ω ) requires the prior

knowledge of the sensing signal. In experiments, instead of recording the sensing signal in the

microcontroller, we calculate V̇s(t) at the current time step, and let Vs(t− 3π
2ω ) =

V̇s(t)
ω . Using Eq.

(6.7), V̄a(t) can be electronically computed in parallel with V
(0)
a (t), and the total excitation voltage

Va(t) is enabled for frequency conversion. Note that the active meta-layer for frequency conversion is

designed at a single frequency, which should also be known before its operation. However, in practical

applications, adaptive filters can be implemented into the microcontroller, which could circumvent

the need of the prior knowledge of the operation frequency. In addition, the active meta-layer can

work well for narrow-band signals, not just single-frequency incidences, evidenced by the results

reported below.

To illustrate linearity of the active meta-layer, we perform numerical simulations with different
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Figure 6.2: Linear independent control over frequency conversion from 10 to 8.5 kHz. Transmitted
displacement ratio of wave packets wnorm

t and time delay are numerically demonstrated by sweeping
(a) maximum incident displacement wnorm

i from 0.1 to 1, (b) amplitude A1 given in Eq. (6.7) from
0.13 to 1.3, and (c) phase shift ϕ1 from 0 to 2π. In each cases, the parameters that are not swept
remain unchanged as used in Fig. 6.4. Reprinted figure with permission from Q. Wu, X. D. Zhang, P.
Shivashankar, Y. Y. Chen, and G. L. Huang, Physical Review Letters, 128, 244301 (2022). Copyright
(2022) by the American Physical Society.

incidences for the frequency conversion demonstrated in Fig. 6.4a. In the simulations, the normalized

maximum displacement of the incident wave package, wnorm
i = wmax

i /w̄max
i , changes from 0.1 to

1, where w̄max
i denotes the maximum displacement of the incident wave package with the central

frequency being 10 kHz in Fig. 6.4(a). Figure 6.2(a) shows the normalized maximum displacement

of the transmitted wave package, wnorm
t = wmax

t /w̄max
t , and the relative time delay compared with

that in Fig. 6.2(a). Similarly, w̄max
t represents the maximum displacement of the transmitted wave

package with the central frequency being 8.5 kHz in Fig. 6.2(a). It can be clearly seen that wnorm
t is

proportional to wnorm
i , and the relative time delay remains zero for all wnorm

i , indicating linearity

of the active meta-layer. Further, to show independency between different harmonics of the active

meta-layer, we conduct another set of numerical simulations with different A1 and ϕ1 still for the

frequency down conversion demonstrated in Fig. 6.4(a). As shown in Fig. 6.2(b) where ϕ1 = 0,
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wnorm
t linearly increases with A1, and the relative time delay still remains close to zero. While, in Fig.

6.2(c), A1 keeps unchanged and ϕ1 increases from 0 to 2π, giving rise to linear changes of the relative

time delay. In all the simulations, wave cancellation has not been impaired to any extent, and no

waves with other frequency components have been detected in the transmitted domain, successfully

demonstrating the independent control over frequency-converted waves.

6.4 Experimental demonstration: arbitrary frequency conver-

sion

To validate the design for frequency conversion, we fabricate the linear active meta-layer on a

steel beam and construct the corresponding electrical control system for experimental testing We

implement the metamaterial on a steel beam in the experiment. As shown in Fig. 6.3(a), the unit

cell of the metamaterial consists of three piezoelectric patches and a feedforward-controlled circuit.

The piezoelectric patches (STEMiNC PZT 5J: 10 × 10 × 0.5 mm, 10 × 4 × 1 mm) are mounted to

the beam via conductive epoxy. The relatively large piezoelectric patch is referred as a sensor. The

other two piezoelectric patches with identical parameters are used as actuators, which are bonded

symmetrically to the sensor on the reverse side of the beam. The digital feedforward-controlled

circuit is composed of a charge-amplifier, differential circuit, DC bias voltage circuit, microprocessor

(STM32F405) with built-in analog-to-digital converter (ADC) and digital-to-analog converter (DAC),

high-pass and low-pass circuit, voltage amplifier and inverting voltage amplifier. The values of all

electrical components are listed in TABLE 6.1. The precise operational amplifiers, OPA445 from

Texas Instruments, are chosen to make the circuit boards in the experiment. More specifically, a

charge-amplifier is connected to the sensor to sense the voltage signals. These sensing voltage signals

are digitalized by the ADC and then fed to the microprocessor after going through the DC bias

voltage circuit. The second order transfer function used for wave cancellation reads

H0(s) =
1

(s/ω0)2 + 2ηsω0 + 1
. (6.8)

The digital values are transferred into the analog voltage signals by the DAC. Finally, the output

signals go through one voltage amplifier and one inverting voltage amplifier, and are applied on the

two actuators, respectively, producing antisymmetric actuations.

In experiments, incident flexural waves are launched from the left of the active meta-layer using

a piezoelectric actuator bonded on the host beam. We select 15-peak tone-burst signals with the
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(e) 

Figure 6.3: Experimental setup. (a) Photo of the time-modulated meta cell. (b) Photo of the circuit.
(c) Photos of the sensor and actuators. (d) Illustration of the feed-forward control. (e) Illustration
of the measurement process. In the experimental measurement, a piezoelectric patch is attached
on the left side of the beam to generate incident flexural waves. 15-peak tone-burst signals, central
frequencies are selected as 10 kHz, are generated by a signal generator (Tektronix AFG3022C) and
amplified by a high voltage amplifier (Krohn-Hite), and then employed to the beam. Blu Tacks are
attached to the both ends of the beam to absorb the reflected waves. The transverse velocity wave
fields are measured on the surface of the beam by a scanning laser Doppler vibrometer (Polytec
PSV-400). Reprinted figure with permission from Q. Wu, X. D. Zhang, P. Shivashankar, Y. Y. Chen,
and G. L. Huang, Physical Review Letters, 128, 244301 (2022). Copyright (2022) by the American
Physical Society.
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Parameters Values
C1 10 pF
C2 10 nF
R0 100 MΩ
R1 330 Ω
R2 10 kΩ
R3 3.3 kΩ
R4 0∼100 kΩ

Table 6.1: Electrical components used in the experiments.

central frequency being 10 kHz as incident signals. The out-of-plane velocity field in the transmitted

domain is measured using a scanning laser Doppler vibrometer. Figure 6.4 shows the transmitted

wave signals in time and frequency domains measured from experiments (green solid curves). For

comparison, corresponding time-dependent numerical simulations are performed using COMSOL

Multiphysics (red dashed curves). In Fig. 6.4(a), frequency down conversion is realized by imposing

N = 1, δω1 = −2π×1.5 kHz, and ϕ1 = 0. The black dotted curve in the frequency domain represents

the frequency components of the incident wave measured without the electrical control system. It

can be clearly seen that the active meta-layer successfully converts the frequency from 10 to 8.5

kHz as desired, both experimentally and numerically. Importantly, no waves at other frequencies

appear in the transmitted spectrum, in stark contrast with nonlinear and time-modulated materials.

Similarly, the linear active meta-layer also supports frequency up conversion, i.e. from 10 to 11.5 kHz

by enforcing δω1 = 2π × 1.5 kHz, as shown in Fig. 6.4(b). Note that small spectral discrepancies

are visible between the experiments and simulations. This could result from the boundary reflection

and signal minor distortion in the digital microcontroller, which are not properly considered in the

numerical simulation and can result in wider band in the transmitted waves. In addition to the

single-frequency conversion, the active meta-layer is capable to create frequency-comb signals. To

demonstrate this, we let V
(0)
a (t) = 0, releasing the incident wave to the transmitted domain and

impose N = 2 with δω1 = −2π × 1.5 kHz and δω2 = 2π × 1.5 kHz to actively emit waves with the

other two frequency components. As shown in Fig. 6.4(c), the transmitted wave peaks at three

frequencies, 8.5, 10, and 11.5 kHz, as demand. The quality factor of those peaks can be enhanced by

impinging incident waves containing enough numbers of peaks in the tone-burst signals.

Dynamic control of flexural waves using time-modulated meta-layer

In addition to the demonstration of linear frequency conversion, we emphasize that the system is

dynamically tunable by reprogramming the time-modulated transfer function. The wave cancellation
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Figure 6.4: Demonstrations of the frequency shifting function in three typical scenarios: 10 kHz
incidence is converted into (a) transmission of 8.5 kHz, (b) transmission of 11.5 kHz, and (c)
transmission of 8.5 + 10 + 11.5 kHz (frequency comb). The red and green curves represent the
numerical and experimental results, respectively. The black dotted curves in the frequency spectra
denote the incidence wave as the reference. Reprinted figure with permission from Q. Wu, X. D.
Zhang, P. Shivashankar, Y. Y. Chen, and G. L. Huang, Physical Review Letters, 128, 244301 (2022).
Copyright (2022) by the American Physical Society.

is realized experimentally. The measured time-domain signals and the corresponding converted

frequency spectrum are presented in Fig. 6.5. It can be readily seen that the zero-order wave

component is completely canceled at ω0. The frequency components around ω0 are heavily suppressed

as well.

The frequency shifting function that simply shifts the incident frequency to one another can be

obtained by adding another transfer function of generating higher-order waves in addition to the

frequency cancelation. This has been explained theoretically by Eq. (6.7). As can be seen in Fig. 6.6,
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Figure 6.5: Frequency cancelation effect for the zero-order incidence ω0. (a) Experimentally measured
velocity fields. (b) Time-domain signals. (c) Frequency-domain signals. Reprinted figure with
permission from Q. Wu, X. D. Zhang, P. Shivashankar, Y. Y. Chen, and G. L. Huang, Physical
Review Letters, 128, 244301 (2022). Copyright (2022) by the American Physical Society.

Figure 6.6: Frequency shifter. (a-c) Measured velocity fields, time-domain and frequency-domain
signals for the frequency shifter that shifts 10 kHz to 8.5 kHz. (d-f) Measured velocity fields,
time-domain and frequency-domain signals for the frequency shifter that shifts 10 kHz to 11.5 kHz.
Reprinted figure with permission from Q. Wu, X. D. Zhang, P. Shivashankar, Y. Y. Chen, and G. L.
Huang, Physical Review Letters, 128, 244301 (2022). Copyright (2022) by the American Physical
Society.

the two first-order waves can be generated with the zero-order incidence getting canceled, achieving

frequency shifting effect. We also provide the experimental measurement for arbitrary combination

of different frequencies. In Figs. 6.7(a-d), the first-order waves along with the incident zero-order

can be observed in the frequency spectra. In Figs. 6.7(e-f), we also show the combination of three

wave components with two being the first-order and the other being the zero-order.

6.5 Programmable metasurfaces enabled by independent fre-

quency conversion

Implementing an array of the linear active meta-layers to a plate enables spacial operations of the

wavefront together with the frequency conversion. We first construct a phase-gradient meta-layer
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Figure 6.7: Frequency comb. (a-b) Measured time-domain and frequency-domain signals for the
frequency comb 8.5 + 10 kHz. (c-d) Measured time-domain and frequency-domain signals for the
frequency comb 10 + 11.5 kHz. (e-f) Measured time-domain and frequency-domain signals for the
frequency comb 8.5 + 10 +11.5 kHz. Reprinted figure with permission from Q. Wu, X. D. Zhang, P.
Shivashankar, Y. Y. Chen, and G. L. Huang, Physical Review Letters, 128, 244301 (2022). Copyright
(2022) by the American Physical Society.

to steer the frequency-converted wave direction; see Fig. 6.10(a). In the simulations, we keep

δω1 and A1 unchanged among each of the meta-layer units and ϕ1 is arranged as a linear profile

along the vertical direction. The phase difference between adjacent units is the key parameter of

metasurface-related structures in achieving beam deflection with arbitrary angle of deflection. To

demonstrate the phase difference generated by the prescribed phase of the transfer function ϕ1,

here we illustrate the simulation results. Figure 6.8 shows that with ϕ1 changing from 0 to 13π/7,

the time delay is varied evenly, which straightforwardly illustrates the ability of the meta-layer to

independently tune the phase of the transmitted higher-order waves. The numerical results shown in

Fig. 6.2(c) are extracted directly from the simulations shown here in Fig. 6.9.

As shown in the upper panel of Fig. 6.10(b), the incident wave beam with the central frequency

being 10 kHz is transformed to a beam with the central frequency becoming 11.5 kHz and, at the
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Figure 6.8: Time-domain signals at the output of the meta-layer for transmitted first-order wave
component with various phases shift ϕ1 at 10 kHz. Reprinted figure with permission from Q. Wu,
X. D. Zhang, P. Shivashankar, Y. Y. Chen, and G. L. Huang, Physical Review Letters, 128, 244301
(2022). Copyright (2022) by the American Physical Society.

Figure 6.9: (a) Time-domain signals for transmitted first-order wave component at various phase
shifts. (b) Magnified view of the time-domain signal in (a) for presenting the accurate 2π phase
control. The excitation frequency is 10 kHz. Reprinted figure with permission from Q. Wu, X. D.
Zhang, P. Shivashankar, Y. Y. Chen, and G. L. Huang, Physical Review Letters, 128, 244301 (2022).
Copyright (2022) by the American Physical Society.

same time, steered to a direction of θ1 = 19.2 degrees, where dϕ1/dy = 0.13π rad/m. In addition,

another frequency-converted wave steering with δω2 = −2π × 1.5 kHz and dϕ2/dy = −0.13π rad/m

is performed. It is noticed that the incident wave beam is transformed into two beams with central
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frequencies becoming 11.5 and 8.5 kHz, and steered to two directions of 19.2 and −22.4 degrees,

respectively; see the lower panel in Fig. 6.10(b). Note that the mixing effect makes the two beams

somewhat indistinguishable. This could be resolved by either considering a later time instant or

enlarging the frequency difference of the output harmonics.
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Figure 6.10: (a) Schematic of a phase-gradient programmable meta-layer that consists of 14 cells and
features the flexural beam steering with frequency shifts. The red arrow indicates the phase gradient’s
direction. (b) Top panel shows flexural beam steering with the frequency shift δω = 2π× 1.5 kHz and
phase gradient dϕ1/dy = 0.13π rad/m, while the bottom shows the conversion into additional 8.5
kHz with a phase gradient dϕ2/dy = −0.13π rad/m, respectively. Both fields are obtained at 0.7 ms
in the transient analysis. The inputs are set as 10 kHz, and the output wave directions are indicated
by the yellow arrows. Reprinted figure with permission from Q. Wu, X. D. Zhang, P. Shivashankar,
Y. Y. Chen, and G. L. Huang, Physical Review Letters, 128, 244301 (2022). Copyright (2022) by the
American Physical Society.

Figure 6.11 shows the simulation model for the transient analysis. The plane wave excitation

is achieved with an array of piezoelectric actuators. Since perfectly matched layers are disabled in

time-domain simulations, here we use low-reflecting boundary conditions to define the edges of the

host plate. The bottom panel of Fig. 6.11 clearly show the flexural wave distributions at 8 different

time instants for the beam steering of generated first-order wave (ω1 = 2π × 8.5 kHz). In particular,

the field at t = 0.7 ms has been selected in the top panel of Fig. 6.10(b).

In addition, we illustrate a frequency-gradient meta-layer to realize dynamic wave steering, where

the wave in the transmitted domain constantly changes its propagation direction in time; see Fig.

6.12(a) [182, 184]. To construct this meta-layer, we keep A1 and ϕ1 unchanged among each of the

meta-layer units and organize a linear profile to δω1 along the vertical direction. With this, flexural

waves coming through each of the meta-layer units travel at different frequencies to collectively

produce a flexural wave beam rotating in time thanks to the constructive wave interference (see
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Figure 6.11: (a) Simulation model used in the frequency-shifted beam steering simulations. (b)
Flexural field distributions at different time instants for the simulation shown in Fig. 4(b) of the
main text. The color map of each figure is normalized to its own maximum. The excitation is 10 kHz.
Reprinted figure with permission from Q. Wu, X. D. Zhang, P. Shivashankar, Y. Y. Chen, and G. L.
Huang, Physical Review Letters, 128, 244301 (2022). Copyright (2022) by the American Physical
Society.

Supplementary Information). Figures 6.12(b) and 6.12(c) show the simulated wave fields at different

time steps with dδω1/dy = 2π × 4.56 and 2π × 9.12 kHz/m. Dynamic wave steering is clearly

demonstrated, and a greater dδω1/dy induces faster angular speed of the wave beam.

To further characterize the wave manipulation by the dynamic beam steering, we first plot the

dispersion diagram for flexural modes in a free plate in Fig. 6.13. In particular, we use the hue

to distinguish the flexural modes from the others (longitudinal). Then, we proceed to present the

analytical formulation of the flexural beam steering. The derivation is very similar to what has been

presented in the optical counterpart [182, 184]. We assume all the meta units generate higher-order

waves with the same amplitudes but different frequencies. Then the far-field spatio-temporal profile
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Figure 6.12: (a) Schematic of the frequency-gradient programmable meta-layer that contains 20 cells
and provides dynamic control over the flexural beam steering as time progresses. The red arrow
indicates the frequency gradient’s direction. (b,c) Dynamic beam steering over time at the frequency
gradients (b) dδω1/dy = 2π × 4.56 and (c) 2π × 9.12 kHz/m for 20 meta-layer units included. The
inputs are set as 10 kHz, and the output wave directions are indicated by the yellow arrows at each
time instant. Reprinted figure with permission from Q. Wu, X. D. Zhang, P. Shivashankar, Y. Y.
Chen, and G. L. Huang, Physical Review Letters, 128, 244301 (2022). Copyright (2022) by the
American Physical Society.
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Figure 6.13: (a) Dispersion diagram for flexural wave mode in a free plate. The hue is defined as∫∫∫
V

|uz|2
|ux|2+|uy|2+|uz|2 dV to distinguish the flexural modes from others. In the figure, the red color

means flexural modes, whereas the blue means in-plane modes. (b) The magnified view of (a) at
low frequencies. Reprinted figure with permission from Q. Wu, X. D. Zhang, P. Shivashankar, Y.
Y. Chen, and G. L. Huang, Physical Review Letters, 128, 244301 (2022). Copyright (2022) by the
American Physical Society.

takes the following form:

W (r, t) =

N∑
n=−N

a0G(r − rn)e
i(kn|r−rn|−ωnt), (6.9)
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where a0 denotes the transmitted wave magnitude, rn = (0, nd)T represents the position of the nth

meta unit, G(r − rn) is a slowly varying-envelope describing the angular divergence of the radiation

pattern, and eikn|r−rn| is a fast-varying phase term. In the far-field region, r ≫ nd, meaning that

G(r − rn) ≈ G(r) and |r − rn| ≈ r + nd. Assuming δω ≪ ω0 and δk ≪ k0, we have, up to the

first-order,

W (r, t) ≈ a0G(r)ei(k0r−ω0t)
N∑

n=−N

ein(δkr+k0d sin θ−δωt), (6.10)

where θ is the transverse angle in the cylindrical coordinate system. The above expression can be

further modified into

W (r, t) ≈ 2a0G(r)ei(k0r−ω0t)
N∑

n=0

cos[n(δkr + k0d sin θ − δωt)]. (6.11)

Since the steering beam is the result of constructive interference of the output wave components, the

maximum intensity is always achieved when

r

v
+

k0d

δω
sin θ − t = 0. (6.12)

in which v denotes the group velocity. This means that the angular speed of the beam steering,

sin θ
t−r/v , linearly scales with δω/d at a certain r when we replace t − r/v with another time term

t′. Therefore, with the meta-layer unit spacing d fixed, the larger the frequency shift δω is, the

faster the beam is dynamically steered, which agrees with the numerical observations illustrated in

Fig. 6.12 and leads to the same conclusion in the reported optical case [182, 184]. Since we have

chosen δω = 0.01ω0 and 0.02ω0 in the cases in the main text, the conditions δω ≪ ω0 and δk ≪ k0

hold well, and the group velocity v within the considered spectral region barely changes (δω and δk

linearly scale); see Fig. 6.13. In addition, for dynamic beam steering in the demonstrations, we apply

continuous sine waves. Wave dispersion can be ignored. Dispersion usually will not produce large

impact on wave interference patterns, which are dominant by the phases of waves. While dispersion

does influence how fast this wave package moves in space. After all, the flexural wave dispersion does

not necessarily influence the dynamic beam steering here. The angular scanning speed is proportional

to δω/d for the choices of δω.
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6.6 Summary

In summary, we introduce a linear active meta-layer for independent frequency conversion of flexural

waves in elastic beam and plate. The active meta-layer is constructed in a beam by mounting

piezoelectric elements connected with an electrical controller. The design embraces a feed-forward

control loop that can naturally perform time-modulated independent parallel operations. We

demonstrate the frequency conversion experimentally and numerically and prove independent wave

frequency manipulation ability and its linearity. By implementing the linear active meta-layers in a

plate, we also show wave beam steering of frequency-converted waves and dynamic beam steering

using phase-gradient and frequency-gradient arrangements. Different from existing designs, the linear

active meta-layer paves a way for fully control time-domain signals and wave energy of flexural waves.

Furthermore, thanks to its simplicity, this active design can be easily extended to 2D and 3D active

metamaterials for even more complicated wave manipulation and control.

The content of this section is reproduced from Q. Wu, X. D. Zhang, P. Shivashankar, Y. Y. Chen,

and G. L. Huang, Physical Review Letters, 128, 244301 (2022). Copyright (2022) by the American

Physical Society.
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Chapter 7

CONCLUSIONS

The dissertation introduces some conceptual metamaterial prototypes utilizing programmable piezo-

electric shunts to break certain symmetry in order to observe asymmetry and nonreciprocity in elastic

waves. By integrating analytical, numerical and experimental approaches, it has been demonstrated

that the involved asymmetry and nonreciprocity are induced by the predefined interplay between

the electrical and mechanical components of the active systems. First, by mapping the concept of

non-Hermitian PT symmetry from optics onto elastics, the PT symmetry conditions for flexural

waves have been theoretically and numerically examined in a 1D Euler-Bernoulli beam. Similar

to the optical counterpart, this condition requires the bending stiffness and/or mass density to

be symmetric in real part but antisymmetric in imaginary part. Shunted piezoelectric patches

modulated with balanced positive and negative resistance can ensure this condition and cause the

unidirectional reflectionlessness taking place at the exceptional points of the scattering matrix, where

both eigenvalues and eigenvectors coalesce. The exceptional point separates the PT -broken and

PT -unbroken phases for flexural wave propagation. The former breaks the conventional energy

conservation law, while the latter does not. In the deeply subwavelength regime, the piezoelectric

shunts with space-time modulation can be treated as a 1D metamaterial consisting of space-time

modulated oscillator. With this in mind, the nonreciprocity of Rayleigh wave propagation has

been investigated on the space-time modulated surface of a semi-infinite medium. The space-time

modulation effectively breaks the time-reversal symmetry, and there exists nonreciprocal veering and

locking pairs on the dispersion diagram. As a consequence, Rayleigh waves propagating along opposite

directions around the nonreciprocal pairs undergo different conversion conditions. In other words,

the wave and frequency conversion only takes place along one direction, exhibiting nonreciprocity of

Rayleigh waves. It has also been pointed out that with a periodic, nonlocal connection of piezoelectric

materials, modulated by certain transfer functions, similar nonreciprocity can take place for flexural
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waves in a Timoshenko beam. Such a system shows both theoretically and experimentally that

flexural waves experience either amplification or attenuation along one direction. Along the opposite

direction, the situation is reversed. This is due to the parity symmetry broken by the nonlocal

nonreciprocal interactions. The unidirectional amplification/attenuation can be well explained by the

energy cycle of the additional bending stiffness induced by the nonlocal interactions. Additionally, the

1D non-Hermitian skin effect exists featuring a group of localized bulk modes on the open edges of a

finite lattice. The nonreciprocity induced by nonlocal nonreciprocal interactions originates from the

complex bending stiffness in the diagonal of the stiffness tensor. Later, another active solid, involving

odd/asymmetric mass density tensor and featuring asymmetric off-diagonal terms, has been proposed

to realize the nonreciprocity for in-plane motions. It has been shown for the first time that the odd

mass density setup can achieve nonreciprocal wave coupling between the transverse and longitudinal

in 1D. In 2D, it admits an energy phase transition which leads to directional wave amplification and

attenuation. This behavior can be explained by the kinetic energy cycle of the odd mass. One of

the main highlights of the odd mass density system is that the amplification behavior is tunable

through tuning the electronic transfer function. the other highlight is the emergence of a group of

bulk eigenmodes localized at the open edges of a 2D odd mass density solid. These bulk eigenmodes

are the elastic manifestation of 2D non-Hermtian skin effect. The last part of the dissertation have

proposed a linear active meta-layer powered by time-modulated transfer functions in a structural

beam. It can convert a flexural incidence into flexural transmission of any frequencies, phases and

amplitudes on demand. The system is linear, being irrelevant with incident amplitude, simply because

of the time modulation of the sensing signal. The independent conversion among different frequencies

is due to the parallel operation of each target frequency components by the time-dependent transfer

function. More importantly, thanks to its comprehensive wave control capability, this meta-layer can

serve as the building blocks of two novel active metasurfaces, conducting frequency-converted beam

steering and dynamic beam steering for flexural waves in 2D.

The research of active elastic metamaterials has revolutionized the way of developing next-

generation wave manipulation devices. It involves the knowledge in multiple seemingly independent

areas such as mechanical, electrical engineering and control science. The interactions of the disciplines

allow the active system to perform reconfigurable, adaptable and multifunctional tasks. As has

been mentioned in the Introduction section, some conventional wave control strategies have been

significantly influenced. For instance, much broader wave mitigation bandgaps and even multiple

bandgaps coexisting can be pursued in a fairly simple structural platform with the help of active

elastic metamaterials. This dissertation, benefiting from the advances in active elastic metamaterials,
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propose some prototypes for demonstrating unconventional ways of manipulating elastic waves. These

prototypes are scalable, and their principles could be properly mapped onto the micro/nano-scale

scene. With the development of advanced manufacturing techniques in soft and flexible materials,

active elastic metamaterials will impact upon the development of future multifunctional wave devices.
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Appendix A

DERIVATION OF CHARACTERISTIC EQUATION OF

RAYLEIGH WAVE TO THE LEADING ORDER

Due to the similarity between equations (3.11) and (3.12), we mainly focus on the derivation related

to equation (3.11). By solving equation (3.11) for Dj
1 (z) and considering Rayleigh waves decaying

toward +z-direction, the leading-order terms of the jth-order harmonic component of expression

(3.9) reads

Φj = A1e
−qjpjzeijξei(q̃x−ω̃t), (A.1)

with pj =
√
1− ω2

j /c
2
Lq

2
j . Similarly, one can obtain the leading-order shear potential function as

Ψj = B1e
−qjsjzeijξei(q̃x−ω̃t) (A.2)

with sj =
√
1− ω2

j /c
2
T q

2
j . In above equations, A1 and B1 are arbitrary wave amplitudes. Therefore,

the leading-order terms of displacements u and w of the jth-order harmonic can be obtained as

uj = ∂xΦ
j + ∂zΨ

j = qj(iA1e
−qjpjz − sjB1e

−qjsjz)eijξei(q̃x−ω̃t) (A.3)

wj = ∂zΦ
j − ∂xΨ

j = −qj(pjA1e
−qjpjz + iB1e

−qjsjz)eijξei(q̃x−ω̃t) (A.4)

and the leading-order terms of the two stress components can be written as

σj
zz = µ q2j (rjA1e

−qjpjz + 2isjB1e
−qjsjz) eijξei(q̃x−ω̃t) (A.5)

σj
xz = µ q2j (−2ipjA1e

−qjpjz + rjB1e
−qjsjz) eijξei(q̃x−ω̃t), (A.6)
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where µ is the shear modulus and rj = 2− ω2
j /c

2
T q

2
j . On the other hand, the equation of motion of

surface oscillators is written as

m∂2
tZ

j +Km

(
Zj − wj

z=0

)
= 0, (A.7)

where Zj is the jth-order harmonic component of the mass displacement up to the leading-order

correction. Assuming a traveling wave solution reading Z =
∑

j∈Z Z
j
0e

ijξei(q̃x−ω̃t) for the oscillator

mass motion and keeping only the leading-order terms, equation (A.7) becomes then

Zj =
Ω2wj

z=0

Ω2 − ω2
j

, (A.8)

where Ω =
√

K/m represents the resonant frequency of the unperturbed oscillators. The exerted

stress by the oscillators on the surface reads

σosc
zz =

K2(Z
j
0 − wj

0)

A
=

Kω2
jw

j
z=0

A
(
Ω2 − ω2

j

) (A.9)

with A denoting the occupied area of each oscillator. Applying the boundary conditions σj
zz,z=0 =

−σosc
zz and σj

xz,z=0 = 0 and eliminating the two arbitrary wave amplitudes, we obtain the characteristic

equation of leading-order correction which describes the Rayleigh wave dispersion in the presence of

space-time modulated oscillators (see equation (3.14) in the main text).
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Appendix B

DERIVATION OF ORTHOGONALITY CONDITION

Following the effective body forces given in the main text and considering the fact that the first-order

correction terms are all periodic with respect to ξ, we take average on the forced governing equations

to eliminate the propagating effect along the x-direction as

−q20 (2µ+ λ) + µ∂2
z iq0 (µ+ λ) ∂z

iq0 (µ+ λ) ∂z (2µ+ λ) ∂2
z − q20µ

 δφ+ F = −ω2
0ρδφ (B.1)

−K (⟨δZ⟩ − ⟨δwz=0⟩) + ⟨G⟩ = −ω2
0m ⟨δZ⟩ (B.2)

(iq0µ ⟨δw⟩+ µ∂z ⟨δu⟩)z=0 = ⟨H⟩ (B.3)

[iq0λ ⟨δu⟩+ (2µ+ λ) ∂z ⟨δw⟩]z=0 = −K/A (⟨δZ⟩ − ⟨δwz=0⟩) + ⟨I⟩ , (B.4)

where the averaging operator takes the form of ⟨⟩ ≡ 1/2π
∫ 2π

0
. By projecting the governing equation

(B.1) onto the complex conjugate mode shape φ∗ and integrating over the semi-infinite space along

the +z-direction, we have

− iq0λ
(
uast ⟨δw⟩

)
z=0

− [u∗ (iq0µ ⟨δw⟩+ µ∂z ⟨δu⟩)]z=0 + µ (∂zu
∗ ⟨δu⟩)z=0

− [u∗ (iq0λ ⟨δu⟩+ (2µ+ λ) ∂z ⟨δw⟩)]z=0 − iq0µ (w∗ ⟨δu⟩)z=0

+ (2µ+ λ) (∂zw
∗ ⟨δw⟩)z=0 +

∫ ∞

0

φ∗ · ⟨F ⟩ dz = 0

(B.5)

The presence of the space-time modulation in this work makes the whole system a forced and

non-Hermitian (non self-adjoint) system, which could be readily seen from equation (B.5) having

been left multiplied by the complex conjugate eigenvector φ∗ and right multiplied by δφ (being left

multiplied by φ will simply lead to complex eigenvalues rather than the current negative, real ones).

Following the notation in [185], this further implies the bi-orthogonality relation
∫∞
0

φ∗Bδφdz = 0,
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where the operator B is an identity matrix in this work. In addition, the continuous part of the

forced system has non-zero modulation-induced effective body force F . As has been mentioned in

the main text, in order for this system to remain stable, the body force needs to do deliver zero work

within the entire semi-infinite medium, i.e.
∫∞
0

φ∗ · ⟨F ⟩ dz = 0 must hold, which returns equation

(B.5) and corresponds to a continuous version of the discrete orthogonality condition presented in

our recent paper [110]. Based on the governing equation (B.2) and boundary conditions (B.3) and

(B.4), and considering the complex conjugates of the leading-order stress boundary conditions and

the governing equation of motion of oscillators, we further simplify equation (B.5) into

mω2
0

A
(w∗

z=0 ⟨δZ⟩ − Z∗ ⟨δwz=0⟩) + w∗
z=0

(
⟨G⟩
A

− ⟨I⟩
)

− u∗
z=0 ⟨H⟩+

∫ ∞

0

φ∗ · ⟨F ⟩ dz = 0 (B.6)

Combining equations (3.13), (B.2) and (B.6), we reach eventually the orthogonality condition (3.28)

in the main text.

w∗
z=0

(
Q0

A
⟨G⟩ − ⟨I⟩

)
− u∗

z=0 ⟨H⟩+
∫ ∞

0

φ∗ · ⟨F ⟩ dz = 0. (B.7)
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Appendix C

DERIVATION OF THE FIRST-ORDER CORRECTION ON

THE DISPERSION CURVES OF COUPLED MODES

Similar to the uncoupled scenario, we take average on the complete effective body forces for the

coupled scenario in equation (3.33). In this case, the first-order harmonic φ1 is eliminated. The

averaged effective body forces are the same as equation (3.29), except for the averaged body forces

⟨G⟩0 and ⟨I⟩0 taking different forms

⟨G⟩0 = −V1

〈
δKeiξ

〉 (
Z1 − w1

z=0

)
+ 2mω0δωV0Z

0 (C.1)

⟨I⟩0 = V1

〈
δK (ξ) eiξ

〉
A

(
Z1 − w1

z=0

)
− iλδqV0u

0
z=0. (C.2)

Multiplying the effective body forces (3.33) by e−iξ and operating average simply gets rid of the

fundamental harmonic φ0 and return the effective body forces of the first-order harmonic φ1.

⟨F ⟩1 =

V1 [−2q1δq (2µ+ λ) + 2ρω1δω]u
1 + i (µ+ λ) δq∂zV1w

1

V1 [−2µq1δq + 2ρω1δω]w
1 + i (µ+ λ) δq∂zV1u

1

 (C.3)

⟨G⟩1 = −V0

〈
δKe−iξ

〉 (
Z0 − w0

z=0

)
+ 2mω1δωV1Z

1 (C.4)

⟨H⟩1 = −iµδqV1w
1
z=0 (C.5)

⟨I⟩1 = V0

〈
δK (ξ) e−iξ

〉
A

(
Z0 − w0

z=0

)
− iλδqV1u

1
z=0 (C.6)

As can be seen from the expressions (C.1), (C.2), (C.4) and (C.6), the non-zero space-time modulation

δK (ξ) comes into play and gives rise to the interaction between modes φ1 and φ0. Substituting

equations (3.29), (C.1), (C.2) and (C.3-C.6) into the orthogonality condition (3.28) yields equation
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(3.34) in the main text. E11 E12

E21 E22


V0

V1

 = E

V0

V1

 = 0, (C.7)

where

E11 = a0δq + b0δω

E12 = q0p0
δK

A
(1− 2

r0
)

(
Z1 + q1p1(1−

2

r1
)

)
(Q0 + 1)

E21 = q1p1
δK

A
(1− 2

r1
)

(
Z0+q0p0(1−

2

r0
)

)
(Q1 + 1)

E22 = a1δq + b1δω

(C.8)

and
〈
δKeiξ

〉
=
〈
δKe−iξ

〉
= δK.
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Appendix D

DETAILS OF DERIVING THE CONVERSION

PARAMETERS OF VEERING PAIRS

In this appendix, the derivation highly resembles that introduced in [110]. For the veering pairs

discussed in the main text, we repeat the group velocities for the uncoupled harmonics:

v0g = −a0
b0

, v1g = −a1
b1

(D.1)

Substituting expression (D.1) into equation (3.36) and rearranging the resulting equation yields

δq± =
δω

2

(
1

v0g
+

1

v1g

)
±

√[
δω

2

(
1

v0g
− 1

v1g

)]2
+

E12E21
b0b1v0gv

1
g

= ±δqa + δqb. (D.2)

By assuming a conversion coefficient C = V1

V0
, we have

C± =

(
δq± − δω

v0g

)
b0v

0
g

E12
=

((
1

v1g
− 1

v0g

)
δω ±

(
δq+ − δq−

)) b0v
0
g

2E12
= ±Ca + Cb. (D.3)

When the excitation frequency ω0 + δω is close to the intersection frequency of the coupled mode ω0,

based on equations (D.2) and (D.3), the wave solution is a superposition of the two possible wave

components

φ(x, t) =
(
V0φ

0ei(q0x−ω0t) + V1φ
1ei(q1x−ω1t)

)
ei(δqx−δωt)

=
[
V0+e

iδqax
(
φ0ei(q0x−ω0t) + (Ca + Cb)φ

1ei(q1x−ω1t)
)]

ei(δqbx−δωt)

+
[
V0−e

−iδqax
(
φ0ei(q0x−ω0t) − (Ca − Cb)φ

1ei(q1x−ω1t)
)]

ei(δqbx−δωt).

(D.4)
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Without loss of generality, let us assume x = 0 is where the Rayleigh wave enters the modulated

area. In order for φ0 to be the only existing one at x = 0, we take V0± = (Ca ∓ Cb)V0. In this way,

the previous solution (D.4) becomes

φ(x, t) = 2V0[Ca cos (δqax)φ
0ei(q0x−ω0t) − iCb sin (δqax)φ

0ei(q0x−ω0t)

+ i
(
C2

a − C2
b

)
sin (δqax)φ

1ei(q1x−ω1t)]ei(δqbx−δωt)

(D.5)

As x increases, the amplitude of φ0 decreases due to the fact that |Ca| ≥ |Cb| as long as the space-time

modulation is turned on. Meanwhile, the amplitude of φ1 starts to increase. At x = d = π/ (2δqa),

φ0 reaches its minimum while φ1 reaches the maximum. Typically, the total conversion from φ0 to

φ1 can be expected when Cb = 0, namely, δω = 0. In this case, we have the following expressions in

the main text.

δq± = ±
√

E12E21
b0b1v0gv

1
g

, C± = ±
b0v

0
g

E12

√
E12E21
b0b1v0gv

1
g

. (D.6)
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Appendix E

NUMERICAL VALIDATION OF THE UNMODULATED

MODEL

To verify the theoretical part, we conduct numerical simulations using a commercial software COMSOL

Multiphysics. In the theoretical section, we assume a continuous span of spring-mass oscillators

whose spring constants are space-time modulated in a wave-like fashion. However, in real cases

the distribution of oscillators cannot be continuous. In order to effectively model the continuous

section, we construct discrete spring-mass oscillators separated by spacing ls, as shown in Fig. 3.1,

with the help of lumped mechanical system module, as shown in Fig. E.1(a). At first, we start

with unmodulated spring-mass oscillators to validate the simulation model. The parameters used

here are identical to those used in the theoretical section (Fig. 3.1). As shown in Fig. E.1(a),

the numerically modeled supercell is shown with its top surface decorated by five non-modulated

spring-mass oscillators (δK = 0). The spacing is chosen as ls = λm/20. Since the chosen spacing

is much smaller than the operating wavelength, according to the long wavelength assumption, the

discrete oscillators can be equivalently treated as a continuous spring-mass layer at the surface.

The low-reflecting boundary (LRB) condition is applied on the bottom boundary of the supercell

for diminishing the undesired reflection of bulk waves from the bottom. The supercell is bounded

horizontally by two vertical Floquet periodic boundaries highlighted in blue. In this way, the supercell

well represents a horizontally infinite system. Discrete points are distributed on the top surface,

corresponding to the spring-mass oscillators. The displacements w at the bottom ends of springs are

extracted at the points on the top surface. By contrast, the forces F exerted by the oscillators on the

top surface is calculated at the bottom ends of springs and then is applied on the discrete points. The

modal analysis gives the calculated bulk band structure shown in the left panel of Fig. E.1(b). The

analytical and numerical obtained upper and lower branches are in good agreement. The existence
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Figure E.1: (a) Schematic illustration of the supercell which represents a horizontally infinite semi-
infinite medium decorated by non-modulated (δK = 0) spring-mass oscillators on the top surface.
The discrete points represent the spring-mass oscillators. The top surface is set free while the bottom
one is set with low-reflecting boundary condition (LRB). The two highlighted in blue are Floquet
periodic boundary conditions. The z-directional displacement and the exerted force by the oscillators
are recorded and extracted at the contact point. (b) The bulk band structure obtained from the
modal analysis of the supercell is shown in the left panel. The numerical and analytical results agree
well, except for the zone-folding curves. The mode shapes of the two highlighted branches are also
extracted. The corresponding transmission coefficient, shows band gap for the Rayleigh wave around
the resonance frequency, which exhibits great agreement with the supercell analysis. Reproduced
from Journal of the Mechanics and Physics of Solids 146, 104196 (2021), with the permission of
Elsevier Publishing.

of additional numerically obtained bands, which do not appear in the analytical section, is due to

the zone folding since the supercell corresponds to a reducible lattice cell. The mode shapes for the

upper (optical) and lower (acoustic) branches are also shown in the insets. They are out-of-phase

due to the fact that the band gap is generated by the local resonance. To further verify the model,

we construct an array of 600 non-modulated oscillators. Frequency-domain simulation produces the

transmission coefficient which is shown in the right panel of Fig. E.1(b). A band gap for the Rayleigh

wave can be visualized, which agrees well with the modal analysis results. This further proves the

validity of our simulation models.
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Appendix F

HOMOGENIZATION OF METAMATERIAL UNIT CELL

WITH ODD MASS DENSITY

Effective properties of the odd mass metamaterial are obtained at the homogenization limit. The

frequency-dependent effective mass density tensor is numerically obtained using COMSOL Multi-

physics solid mechanics module by imposing a prescribed displacement uP at the boundaries such

that

FR = −ω2V

M̂11 M̂12

M̂21 M̂22

uP , (F.1)

where FR, ω and V denote the boundary reaction forces, operating frequency and unit cell volume,

respectively [148]. For instance, with the application of uP = (1, 0)T at the boundaries, integrating

the reaction forces FR
x and FR

y allows to determine the entries M̂11 and M̂21 using Eq. F.1.

The retrieval of elasticity tensor C for the odd mass metamaterial requires specific boundary

conditions [149, 150]. In the retrieval, at all the boundaries we apply a global strain field upre = Ereiωt,

where r denotes the position vector of each discrete meshing point on the boundaries and

E =

E0
11 E0

12

E0
21 E0

22

 . (F.2)
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Accordingly, the prescribed strain fields are given, respectively, by

E1 =

1 0

0 0

 r, (F.3)

E2 =

0 1

0 0

 r, (F.4)

E3 =

0 0

1 0

 r, (F.5)

E4 =

0 0

0 1

 r. (F.6)

The resulting stress is evaluated by the integration of the corresponding reaction forces at all the

boundaries of the unit cell. The 16 entries of C are determined by establishing 16 equations from the

selection of the prescribed global strain and evaluated stress.
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Appendix G

SAMPLE FABRICATION AND EXPERIMENTAL

PROCEDURE FOR ODD-MASS-DENSITY

METAMATERIAL

Sample fabrication

The odd-mass metamaterial beam in experiments is constructed by mounting four piezoelectric

patches (PZT-5A, 5 mm × 0.55 mm ×0.55 mm) via conductive epoxy onto a laser-cut stainless

steel host beam. The two actuating piezoelectric patches are oppositely polarized such that the two

vertical beams are bent producing forces applied on the central block and the surrounding material.

Experimental procedures

In experiments, an odd mass metamaterial unit cells is connected with external control circuits, see

the schematics in Fig. 5.4 and Figs. G.1 and G.2 for more details about the experimental setup.

Two piezoelectric transducers are attached on the top and bottom sides of host beam to generate

transverse incidence. The transfer function used reads H(ω) = H0/(ω
2/ω2

0 + 2ξω/ω0 + 1), where

H0 = 2× 108, ξ = 0.5 and ω0 = 2π × 15 kHz. We employ 15-cycle tone-burst signals with a central

frequency of 11.3 kHz. We generate and amplify incident wave signals via an arbitrary waveform

generator (Tektronix AFG3022C) and a high voltage amplifier (Krohn-Hite), respectively. In-plane

velocity wave fields for u and v are measured on the surface of the right side of the metamaterial

by a scanning laser Doppler vibrometer (Polytec PSV-400). To suppress reflected waves at the

boundaries of the host beam, we clamp the edge and bond two layers of clay on the host beam with

sufficient lengths. This way, waves can propagate through the metamaterial with approximated

infinite boundary conditions in the background. The time-domain signals shown in Fig. 5.4 are
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Figure G.1: Circuit diagram of the unit cell for the nonreciprocal wave coupling. The resulting transfer
function reads H(ω) = H0/(ω

2/ω2
0 + 2ξω/ω0 + 1), where H0 = 2 × 108, ξ = 0.5 and ω0 = 2π × 15

kHz.

Figure G.2: (a) The photo of the PZT transducer which consists of two PZT-5A patches placed in
parallel. This arrangement allows to generate transverse incidence. (b) The photo of the electrical
control circuits, including low pass filter, voltage amplifier, summing amplifier and charge amplifier.

collected 120 mm away from the right boundary of the odd-mass metamaterial.
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Appendix H

TRANSFER MATRIX METHOD FOR 1D

NONRECIPROCAL WAVE COUPLING

Here, we utilize the transfer matrix method to analytically derive the transmission for the one-

dimensional nonreciprocal wave coupling phenomenon. The unit cell design is shown in Fig. 5.3(a).

The wave numbers read

ql =
√

ρbω2/Eb, (H.1)

qb = (ρbAω2/D)1/4, (H.2)

qlm =
√

ρbω2/Em, (H.3)

qbm = (ρbA0ω
2/Db0)

1/4, (H.4)

qlm1 =
√
ρb1ω2/Em1. (H.5)

where

Db2 = 2Db0, (H.6)

Kb = EbA, (H.7)

Km = EmA0, (H.8)

K1 = Em1A. (H.9)

135



At x = −L and x1 = −L1,

M0n =



1 1 0 0 0 0

iqlKb −iqlKb 0 0 0 0

0 0 1 1 1 1

0 0 iqb −iqb qb −qb

0 0 −q2bD −q2bD q2bD q2bD

0 0 −iq3bD iq3bD q3bD −q3bD





e−iqlL1

eiqlL1

e−iqbL

eiqbL

e−qbL

eqbL


(H.10)

M1n =



1 1 0 0 0 0

iqlm1K1 −iqlm1K1 0 0 0 0

0 0 1 1 1 1

0 0 iqbm −iqbm qbm −qbm

0 0 −q2bmDb2 −q2bmDb2 q2bmDb2 q2bmDb2

0 0 −iq3bmDb2 iq3bmDb2 q3bmDb2 −q3bmDb2





e−iqlm1L1

eiqlm1L1

e−iqbmL

eiqbmL

e−qbmL

eqbmL


(H.11)

N1n =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 iKmdqlme−iqlmL −iKmdqlmeiqlmL

0 0 0 0 −Kmdq2lme−iqlmL −Kmdq2lmeiqlmL


(H.12)

At x = L and x1 = L1,

M0p =



1 1 0 0 0 0

iqlKb −iqlKb 0 0 0 0

0 0 1 1 1 1

0 0 iqb −iqb qb −qb

0 0 −q2bD −q2bD q2bD q2bD

0 0 −iq3bD iq3bD q3bD −q3bD





eiqlL1

e−iqlL1

eiqbL

e−iqbL

eqbL

e−qbL


(H.13)
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M1p =



1 1 0 0 0 0

iqlm1K1 −iqlm1K1 0 0 0 0

0 0 1 1 1 1

0 0 iqbm −iqbm qbm −qbm

0 0 −q2bmDb2 −q2bmDb2 q2bmDb2 q2bmDb2

0 0 −iq3bmDb2 iq3bmDb2 q3bmDb2 −q3bmDb2





eiqlm1L1

e−iqlm1L1

eiqbmL

e−iqbmL

eqbmL

e−qbmL


(H.14)

N1p =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 iKmdqlmeiqlmL −iKmdqlme−iqlmL

0 0 0 0 −Kmdq2lmeiqlmL −Kmdq2lme−iqlmL


(H.15)

At x = 0,

M10 =



1 1 0 0 0 0

iqlm1K1 −iqlm1K1 0 0 0 0

0 0 1 1 1 1

0 0 iqbm −iqbm qbm −qbm

0 0 −q2bmDb2 −q2bmDb2 q2bmDb2 q2bmDb2

0 0 −iq3bmDb2 iq3bmDb2 q3bmDb2 −q3bmDb2


(H.16)

N10 =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 −Kmdq2lm −Kmdq2lm


(H.17)
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T1 =



1 1 −1 −1

iqlmKmd2 −iqlmKmd2 −iqlmKmd2 iqlmKmd2

e−iqlmL eiqlmL 0 0

0 0 eiqlmL e−iqlmL


(H.18)

T2 =



0 0 0 0

e−iqbmLω2mI/L eiqbmLω2mI/L e−qbmLω2mI/L eqbmLω2mI/L

−iqbme−iqbmL iqbmeiqbmL −qbme−qbmL qbmeqbmL

0 0 0 0

0 0 0 0

− eiqbmLω2mI/L −e−iqbmLω2mI/L −eqbmLω2mI/L −e−qbmLω2mI/L

0 0 0 0

− iqbmeiqbmL iqbme−iqbmL −qbmeqbmL qbme−qbmL



(H.19)

Tn = T−1
1 T2. (H.20)

Tnf11(5 : 6, 3 : 6) = Tn(1 : 2, 1 : 4), (H.21)

Tnf12(5 : 6, 3 : 6) = Tn(1 : 2, 5 : 8), (H.22)

Tnf21(5 : 6, 3 : 6) = Tn(3 : 4, 1 : 4), (H.23)

Tnf22(5 : 6, 3 : 6) = Tn(3 : 4, 5 : 8). (H.24)

The rest entries of Tn are zeros.

F =



0 0 0 0 0 0

ω2M̂11 ω2M̂11 ω2M̂12 ω2M̂12 ω2M̂12 ω2M̂12

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

−ω2M̂21 −ω2M̂21 −ω2M̂22 −ω2M̂22 −ω2M̂22 −ω2M̂22


(H.25)
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M1n = M1n + 2N1nTnf11, (H.26)

M1p = M1p + 2N1pTnf22, (H.27)

M10n1 = M10 + 2N10Tnf11 − 2N10Tnf21 − F, (H.28)

M10n2 = M10 + 2N10Tnf11 − 2N10Tnf12 (H.29)

The total transfer matrix reads

T = M0−1
n (M1nM1−1

0n1M10n2 + 2N1nTnf12)(M1p + 2N1pTnf21M1−1
0n1M10n2)

−1M0p (H.30)
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Appendix I

PRINCIPAL DIRECTION OF ODD MASS DENSITY

TENSOR

Based upon Eq. 5.7, we can seperate the odd mass density tensor into even and odd parts. The

principal mass density and directions can be found by solving eigenvalue problem for the even part

M̂e
ij =

M̂11 M̂e
12

M̂e
21 M̂22.

 (I.1)

The eigenvalues read

λ1,2 ≡ M̃11,22 =
M̂11 + M̂22 ±

√
(M̂11 − M̂22)2 + 4M̂e

12M̂
e
21

2
, (I.2)

with M̂e
12 = M̂e

21 = M̂12/2. The corresponding eigenvectors can be written as a transformation

matrix β̃ reading

β̃ =

cos θ̃1 − sin θ̃1

sin θ̃1 cos θ̃1

 . (I.3)

where the principal orientation of the smallest mass density takes tan(2θ̃1) = 2M̂e
12/(M̂22 − M̂11),

since

(M̂22 − M̂11) cos θ̃1 sin θ̃1 = M̂e
12(cos

2 θ̃1 − sin2 θ̃1). (I.4)

must hold. While the odd part M̂o
ij given in Eq. 5.7 is invariant under the transformation, namely

M̂o
klβ̃kiβ̃lj = M̂o

ij =

 0 M̂o
12

−M̂o
12 0

 . (I.5)
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with M̂o
12 = M̂12/2. In this sense, the transformed mass density tensor reads

M̃ij = M̂klβ̃kiβ̃lj = M̂e
klβ̃kiβ̃lj + M̂o

ij =

 M̃11 M̂o
12

−M̂o
12 M̃22

 , (I.6)

which represents Eq. 5.9.
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[55] C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip,

“Observation of parity–time symmetry in optics,” Nature physics, vol. 6, no. 3, pp. 192–195,

2010.

146



[56] A. Guo, G. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G. Siviloglou,

and D. Christodoulides, “Observation of p t-symmetry breaking in complex optical potentials,”

Physical review letters, vol. 103, no. 9, p. 093902, 2009.
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